期刊文献+

激光点云分类质量检查与解决方案探讨 被引量:1

Quality Inspection and Solution of Laser Point Cloud Classification
下载PDF
导出
摘要 点云分类中"人工判别编辑"的好坏直接影响DEM质量。目前,分类成果的质量检查主要要采取人工逐屏浏览检查方式,该方法耗时长,检查不全面。针对该问题,本文对点云分类常见质量错误进行归纳分类,并提出相应的解决方案,三种解决方案采用三种不同算法。从实验结果可以看出,采用本文的检查方法能够快速准确地定位错误位置,在保证检查完整率的同时大幅度数提高检查效率。 The quality of"manual discrimination editing"in point cloud classification directly affects DEM quality.Currently,the quality inspection of classification results mainly adopts manual screen-by-screen browsing inspection method,which takes a long time and is not comprehensive.In order to solve this problem,this paper summarizes and classifies common quality errors in point cloud classification,and proposes corresponding solutions.The three solutions adopt three different algorithms.From the experimental results,it can be seen that the inspection method in this paper can quickly and accurately locate the wrong position and greatly improve the inspection efficiency while ensuring the inspection integrity rate.
作者 林超 黄金辉 LIN Chao;HUANG Jinhui(Land Resource and Information Center of Guangdong Province,Guangzhou Guangdong 510075,China)
出处 《北京测绘》 2019年第12期1558-1561,共4页 Beijing Surveying and Mapping
关键词 人工判别编辑 伪地形 异常点 点云漏分 manual discrimination editing false terrain abnormal point cloud unclassified
  • 相关文献

参考文献8

二级参考文献26

共引文献66

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部