期刊文献+

基于商品购买关系网络的多样性推荐 被引量:7

Diversity Recommendation Based on Product Co-Purchase Network
下载PDF
导出
摘要 如何为消费者提供多样性商品推荐,已成为个性化推荐领域研究的热点。传统多样性推荐常采用随机或评分逆序的方法选择多样性商品,存在无法为消费者准确推荐多样性商品的不足。针对于此,借鉴网络信息扩散的原理,将消费者购买记录二部图转换为商品购买关系网络,采用全邻域方法分析网络中商品节点的重要性;在此基础上,利用关联规则算法计算与推荐预测评分最高商品具有关联关系的关键节点,以此关键节点作为多样性商品推荐的依据,提出基于购买关系网络的多样性推荐方法。研究结果表明,与传统多样性推荐方法相比,新的推荐方法可为消费者更准确地推荐多样性商品的同时,该方法通过关键节点间的推荐级联关系所形成的商品推荐扩散效应,可有效地提升长尾商品的推荐。 How to provide consumers with diversified product recommendation has become a hot topic in the field of personalized recommendation.However,the traditional diversity recommendation selects diversity products by using the random or reverse scoring method,which is not able to accurately recommend diversity products for consumers.Therefore,by referring the theory of network information diffusion,the purchase record of the consumer is transformed into a commodity purchase relationship network,and the importance of commodity nodes in the network is analyzed by using the full neighborhood method.Using Bayesian association rule algorithm to calculate the key nodes that are related to the products with the highest score in the recommendation prediction,and taking the key nodes as the basis for the recommendation of diversified products,a diversity recommendation method based on the purchase relationship network is proposed.The results show that,compared with the traditional diversity recommendation method,the new recommendation method can more accurately recommend diversified products for consumers,and at the same time,the method can effectively promote the recommendation of long-tail products through the product recommendation diffusion effect formed by the recommendation cascade relationship between key nodes.
作者 王茜 喻继军 WANG Qian;YU Jijun(Business School,Sun Yat-Sen University,Guangzhou 510275,China)
出处 《系统管理学报》 CSSCI CSCD 北大核心 2020年第1期61-72,共12页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71772187,70971141,71832014) 教育部人文社会科学研究规划资助项目(15YJA630070) 广东省自然科学基金资助项目(2014A030313184)
关键词 商品购买关系网络 多样性推荐 关键节点 长尾商品 co-purchase network diversity recommendation key node long tail
  • 相关文献

参考文献8

二级参考文献176

  • 1王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 2翁瑾,陈林生.一个基于两层CES效用函数的垄断竞争模型[J].华中师范大学学报(自然科学版),2006,40(3):447-451. 被引量:6
  • 3Wuyts S, Dekimpe M G, Gijsbrechts E, et al. The Connected Customer: The Changing Nature of Consumer and Business Markets[M]. New York: Routledge Academic, 2010.
  • 4Mahler A, Rogers E M. The diffusion of interactive communication innovations and the critical mass: The adoption of telecommunications services by German banks[J]. Telecommunications Policy, 1999, 23(10/11): 719- 740.
  • 5I Schoder D. Forecasting the success of telecommunication services inthe presence ofnetwork effects[J]. Information Economics and Policy, 2000, 12(2): 181-200.
  • 6Hauser J, Tellis G J, Griffin A. Research on innovation: A review and agenda for marketing science[J]. Marketing Science, 2006, 25(6): 687-717.
  • 7Hartmann W R, Manchanda P, Nair H, et al. Modeling social interactions: Identification, empirical methods and policy implications[J]. Marketing Letters, 2008, 19:287 304.
  • 8Goolsbee A, Klenow P. Evidence on learning and network externalities in the diffusion of home computers[J]. Journal of Law and Economics, 2002, 45:317 343.
  • 9Choi H, Kim S H, Lee J. Role of network structure and network effects in diffusion of innovations[J]. Industrial Marketing Management, 2010, 39(1): 170-177.
  • 10Tucker C. Identifying formal and informal influence in technology adoption with network externalities[J]. Man- agement Science, 2008, 54:2024 2038.

共引文献654

同被引文献81

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部