期刊文献+

应用驱动的大数据与人工智能融合平台建设 被引量:5

Application-Driven Big Data and Artificial Intelligence Integration Platform Construction
下载PDF
导出
摘要 【目的】介绍了面向产业需求的大数据与人工智能融合平台建设思路,形成了推动传统产业智能化、智能科技产业化的发展实施方案,为计算创新驱动提供参考。【方法】基于面向行业应用场景的数据特征理解和融合平台需求分析,阐述了基于应用驱动的超级计算与大数据、云计算、人工智能、物联网融合的平台层次结构,在基础融合环境、数据整合框架、业务系统几个方面系统介绍了该融合平台的体系架构和实现。【结果】基于该平台,实现了在装备制造、网联汽车、医疗健康等领域的典型应用,具备较好的适用性。【局限】作为公共开源开放平台提供服务,机构公信力、数据安全性是其下一步需要解决的重要问题。【结论】应用驱动的大数据与人工智能融合平台可作为社会开放、政府可控的智能产业科学发展生态的重要组成部分,进一步解决我国智能产业领域创新能力和创新支撑平台不足的现实问题。 [Objective]In order to provide references for computational innovations,an industrial needs driven integration platform for big data and artificial intelligence analysis and application is proposed to prom ote the traditional industry intelligence and intelligent technology industrialization.[M ethods]Based on the integration o f both data feature understanding and platform requirements in industry-oriented application scenarios,the application-driven platform hierarchy in supercomputer center is designed in a ftised architecture consisting of supercomputing,big data,cloud computing,artificial intelligence and internet of things,which contains implications on physical facilities,system software and management system.In the supercomputer center,it mainly integrates service-related hardware facilities for big data,supercomputing and cloud computing to realize data sharing,high-performance processing,and data security control.By eliminating the difference between various data sources,the platform provides an unified standard data access interface for upper-layer applications,which promotes standardization of big data processing in related industries for resource and data sharing.As an important field of big data applications,the high-efflciency big data application platform for industrials combines with the industrial cloud platform to realize data collection,transmission,collaboration and application by integrating the physical device,virtual network and big data analysis methods.The characteristics of industrial-based big data and artificial intelligence require innovative applications that support the production tasks,such as design,production,sales,operation and maintenance.(Results)Based on the platform,it has achieved typical applications in industrial fields such as equipment manufacturing,networked vehicles,medical health,etc.,showing good applicability.In manufacturing,the platform is a tool for product supplier quality management control,carrying out abnormal inspection and prediction of parts and components,and achieving management ability to control the entire product chain.In networked vehicle,by collecting vehicle driving data and using deep learning modeling,it is possible to analyze the safety of autonomous driving and driving behavior.In disease screening,big data and artificial intelligence analyses for radiological imaging,pathology images,and electronic medical records can help doctors complete analyses of repetitive tasks and complex tasks.[Limitations]As a public open platform to provide services,institutional credibility and data security are important issue to be solved in the next step.[Conclusions]Applicationdriven big data and artificial intelligence integration platform acts as an important part of social-open and governmentcontrollable intelligent industry science development ecology,which further solves the practical problems that insufficient innovation ability in China's intelligent industry.
作者 康波 孟祥飞 夏梓峻 Kang Bo;Meng Xiangfei;Xia Zijun(College of Intelligence and Computing,Tianjin University,Tianjin 300350,China;National Supercomputer Center in Tianjin,Tianjin 300457,China)
出处 《数据与计算发展前沿》 2019年第1期35-45,共11页 Frontiers of Data & Computing
基金 国家重点研发计划(2016YFB0201500) 天津市企业博士后创新项目择优资助计划资助项目(TJQYBSH2018002)。
关键词 超级计算 大数据 人工智能 融合平台 supercomputing big data artificial intelligence fusion platform on big data and AI
  • 相关文献

参考文献10

二级参考文献126

  • 1王子兰,王仕俭,李素闪,程怡.GeoEast处理解释一体化应用[J].天然气工业,2007,27(S1):222-224. 被引量:16
  • 2王喜双,谢文导,邓志文.高密度空间采样地震技术发展与展望[J].中国石油勘探,2007,12(1):49-53. 被引量:39
  • 3王晓慧.线性判别分析与主成分分析及其相关研究评述[J].中山大学研究生学刊(自然科学与医学版),2007,28(4):50-61. 被引量:40
  • 4Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engi- neering, 2014, 26(1): 97-107.
  • 5Syed A R, Gillela K, Venugopal C. The future revolution on big data. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 2(6): 2446-2451.
  • 6Condliffe J. The problem with big data is that nobody und- erstands it [Online], available: http://gizmodo.com/59062- 04/the-problem-wit h-big-dat a-is-t hat- nobody-understan- ds-it, April 30, 2012.
  • 7Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A H. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute Report [Online], available: http://www.mckinsey.com/insig hts/mgi/research/technology_and_innovation/big_data_the_ next_frontier_for_innovation, June, 2011.
  • 8Halevi G, Moed H. The Evolution of big data as a research and scientific topic: overview of the literature. Special Issue on Big Data, Research Trends, 2012, (30): 1-37.
  • 9Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232): 1012-1014.
  • 10Preis T, Moat H S, Stanley H E. Quantifying trading be- havior in financial markets using Google trends. Scientific Reports, 2013, 3:1684.

共引文献271

同被引文献45

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部