摘要
设计并开发了一款基于人脸识别的课堂教学监控系统,该系统通过识别学生上课的表情信息,分析课堂教学情况。首先提出一种基于图像递归切割和OpenCV的人脸检测方法,以提高人脸检测召回率;然后使用百度AI开放平台的在线接口识别人脸表情信息,并将信息插入数据库;最后根据学生表情信息分析低头率、活跃度等课堂情况。实际部署测试后分析了系统的运行效果及时间消耗,结果表明该系统可有效监控课堂教学情况。
A classroom teaching monitoring system is designed based on the face recognition technology.The facial emotions of students are recognized and the situation of teaching is analyzed further.First,a face detection method based on the image recursive cutting and OpenCV is proposed in order to improve the recall rate.Then,the facial emotions are recognized with the online face recognition interface of Baidu AI open platform,and the recognized results are inserted into the database.Finally,the attendance rate and activity of classroom are analyzed.The performance and time consumption of this system are evaluated after deploying,and the results show that the system can effectively monitor classroom teaching.
作者
王昌海
申红雪
张王卫
孙玉胜
王博
WANG Changhai;SHEN Hongxue;ZHANG Wangwei;SUN Yusheng;WANG Bo(Software College,Zhengzhou University of Light Industry,Zhengzhou 450000,China)
出处
《软件工程》
2020年第1期48-50,34,共4页
Software Engineering
基金
郑州轻工业大学第十二批教改项目“互联网+背景下应用技术类课程混合式教学方法研究”资助
郑州轻工业大学第五批青年教改项目“新工科背景下应用技术类课程创新能力培养研究”“智能试卷库系统的分析与设计”“ACM模式下的《算法分析与设计》课程教学探索与实践”资助
关键词
教学监控
人脸检测
人脸识别
情绪识别
teaching monitoring
face detection
face recognition
emotion recognition