期刊文献+

基于Inception-v3卷积神经网络模型的人脸识别 被引量:2

Face recognition based on Inception-v3 convolutional neural network model
下载PDF
导出
摘要 实现了一种基于Inception-v3卷积神经网络的人脸识别方法。该方法通过修改pool_3以上的结构来改变网络深度,从而使卷积神经网络模型能自动提取人脸特征并进行分类。利用OpenCV自建人脸数据库进行训练,通过批量梯度下降法不断优化参数,利用Dropout方法解决过拟合问题。结果表明:该方法在自建人脸数据库上的图像识别率达到98%,并且对光照强度、面部表情变化等干扰具有鲁棒性。 A face recognition method is implemented based on Inception-v3 convolutional neural network.The method changes the network depth by modifying the structure above pool_3,so that the convolutional neural network model can automatically extract facial features and classify them.It is proposed to use OpenCV self-built face database for train-ing,optimize parameters by batch gradient descent method,and use Dropout method to solve over-fitting problem.The experimental results show that the image recognition rate of the proposed method on the self-built face database can reach 98%,and it is robust to disturbances such as illumination intensity and facial expression changes.
作者 雷雨婷 丁学文 孙彦 陈静 董国军 李莉 LEI Yu-ting;DING Xue-wen;SUN Yan;CHEN Jing;DONG Guo-jun;LI Li(School of Electronic Engineering,Tianjin University of Technology and Education,Tianjin 300222,China;Tianjin High Speed Railway Wireless Communication Enterprise Key Laboratory,Tianjin 300350,China;Tianjin Tianda Qiushi Electric Power New Technology Co.,Ltd.,Tianjin 300392,China)
出处 《天津职业技术师范大学学报》 2019年第4期49-54,共6页 Journal of Tianjin University of Technology and Education
基金 天津市科委科技特派员项目(16JCTPJC52500) 天津市教委高等学校科技发展基金计划项目(20110710)
关键词 Inception-v3 人脸识别 自建数据库 OPENCV Inception-v3 face recognition self-built database OpenCV
  • 相关文献

参考文献8

二级参考文献67

  • 1杜成,苏光大,林行刚,顾华.多姿态人脸图像合成[J].光电子.激光,2004,15(12):1498-1501. 被引量:5
  • 2尹宝才,张壮,孙艳丰,王成章.基于三维形变模型的多姿态人脸识别[J].北京工业大学学报,2007,33(3):320-325. 被引量:6
  • 3陈华杰,韦巍.基于关联子区域映射的多姿态人脸识别[J].中国图象图形学报,2007,12(7):1254-1260. 被引量:4
  • 4MEDIONI G,CHOI J,KUO C H,et al.Identifying noncooperative subjects at a distance using face images and inferred three dimensional face models[J].IEEE Trans Syst,Man,Cybern A,Syst,Humans,2009,39(1):12-24.
  • 5BLANZ V,VETTER T.Face recognition based on fitting a 3D morphable model[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(9):1063-1074.
  • 6LIOR W,TAL H,YANIV T.Effective uncon-strained face recognition by combining multiple descriptors and learned background statistics[J].IEEE Pattern Analysis and Machine Intelligence,2011,33(10):1978-1990.
  • 7MARSICO M D E,NAPPI M,RICCO D.Robust face recognition for uncontrolled pose and illumination changes[J].IEEE Transactions on Systems,Man and Cybernetic,2012,43(1):149-163.
  • 8JAVIER R,RODRIGO V,MAURICIO C.Recognition of faces in unconstrained envirouments:a comparative study[J].Journal on Advances in Signal Processing.2009,12(4):44-69.
  • 9WOLF L,HASSNER T,TAIGMAN Y.Descriptor based methods in the wild[A].Faces in Real-life Images Workshop in ECCV[C].2008.1-14.
  • 10ZHAO D,LIN Z,XIAO R,et al.Linear laplacian discrimination for feature extraction[A].Proc IEEE Conference on Computer Vision and Pattern Recognition[C].2009.1-7.

共引文献239

同被引文献19

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部