期刊文献+

核对齐多核模糊支持向量机 被引量:8

Kernel-target alignment multi-kernel fuzzy support vector machine
下载PDF
导出
摘要 支持向量机(SVMs)是当前被广泛使用的机器学习技术,其通过最优分割超平面来提高分类器的泛化能力,在实际应用中表现优异。然而SVM也存在易受噪声影响,以及核函数选择等难题。针对以上问题,本文将基于核对齐的多核学习方法引入到模糊支持向量机(fuzzy support vector machine,FSVM)中,提出了模糊多核支持向量机模型(multiple kernel fuzzy support vector machine,MFSVM)。MFSVM通过模糊粗糙集方法计算每一样例隶属度;其次,利用核对齐的多核方法计算每一单核权重,并将组合核引入到模糊支持向量机中。该方法不仅提高了支持向量机的抗噪声能力,也有效避免了核选择难题。在UCI数据库上进行实验,结果表明本文所提方法具有较高的分类精度,验证了该方法的可行性与有效性。 Support vector machines(SVMs)are widely used machine learning techniques.They are used to construct an optimal hyper-plane and have an extraordinary generalization capability and good performance.However,SVMs are sensitive to noise,and it is difficult to select an appropriate kernel for SVMs.In this paper,we introduce kernel-target alignment-based multi-kernel learning method into fuzzy support vector machine(FSVM)and propose the kernel-target alignment-based multi-kernel fuzzy support vector machine(MFSVM).First,we assign the corresponding membership degree to each sample point by the fuzzy rough set method,and then calculate the kernel weight by the multi-kernel learning based on the kernel alignment.Then,the combined kernel is introduced into the fuzzy SVM.The proposed method not only improves the anti-noise ability of the SVM but also effectively avoids the problem of kernel selection.Experiments on nine datasets of the UCI database show that the proposed method has a high classification accuracy,which verifies its feasibility and effectiveness.
作者 何强 张娇阳 HE Qiang;ZHANG Jiaoyang(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第6期1163-1169,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61473111) 北京建筑大学科学研究基金项目(KYJJ2017017)
关键词 核函数 支持向量机 粗糙集理论 监督学习 模糊分类 模糊隶属函数 鲁棒性 噪声 kernels support vector machines rough set theory supervised learning fuzzy classification fuzzy set mem-bership functions robustness noise
  • 相关文献

参考文献1

二级参考文献8

  • 1V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 3O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 4O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 5N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 6K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.
  • 7田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 8刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26

共引文献48

同被引文献46

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部