期刊文献+

采用划分融合双向控制的粒度支持向量机 被引量:2

Granular support vector machine with bidirectional control of division-fusion
下载PDF
导出
摘要 粒度支持向量机(granular support vector machine,GSVM)引入粒计算的方式对原始数据集进行粒度划分以提高支持向量机(support vector machine,SVM)的学习效率。传统GSVM采用静态粒划分机制,即通过提取划分后数据簇中的代表信息进行模型训练,有效地提升了SVM的学习效率,但由于GSVM对信息无差别的粒度划分导致对距离超平面较近的强信息粒提取不足,距离超平面较远的弱信息粒被过多保留,影响了SVM的学习性能。针对这一问题,本文提出了采用划分融合双向控制的粒度支持向量机方法(division-fusion support vec-tor machine,DFSVM)。该方法通过动态数据划分融合的方式,选取超平面附近的强信息粒进行深层次的划分,同时将距离超平面较远的弱信息粒进行选择性融合,以动态地保持训练样本规模的稳定性。通过实验表明,采用划分融合的方法能够在保证模型训练精度的条件下显著提升SVM的学习效率。 Granular support vector machine(GSVM)introduces the method of granular computing to divide the original dataset;therefore,GSVM improves the efficiency of the support vector machine(SVM).The traditional GSVM adopts the static granules partitioning mechanism to extract representative information from the divided data clusters for model training,which can effectively increase the learning efficiency of the SVM.However,the GSVM uses the same pro-cessing way for different information granules,which may lead to a decline in the generalization ability because of two reasons:(i)No sufficient valid information is extracted from the strong information granules that are close to the hyper-plane,and(ii)excess of the weak information of granules far from the hyper-plane is reserved.These all reduce the learning performance of the SVM.To address this problem,this study proposes a division and fusion SVM model based on dynamical granulation,namely DFSVM.With the DFSVM,the information from the strong information granules near the hyper-plane is divided in depth,and weak information from weak information granules far from the hyper-plane is selectively merged to dynamically maintain the stability of the size of the training samples.The experiments demon-strate that this model can significantly improve the SVM learning efficiency,ensuring the training precision of the model.
作者 赵帅群 郭虎升 王文剑 ZHAO Shuaiqun;GUO Husheng;WANG Wenjian(School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing,Shanxi University,Taiyuan 030006,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第6期1243-1254,共12页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61673249,61503229,U1805263) 山西省回国留学人员科研基金项目(2016-004)
关键词 支持向量机 粒度支持向量机 划分 融合 强信息粒 弱信息粒 动态机制 双向控制 support vector machine(SVM) granular support vector machine(GSVM) division fusion strong informa-tion granule weak information granule dynamic mechanism bidirectional control
  • 相关文献

参考文献2

二级参考文献22

  • 1廖士中,贾磊.一类新的球面核函数的构造[J].计算机研究与发展,2007,44(z2):398-402. 被引量:4
  • 2刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 3曾志强,高济.基于向量集约简的精简支持向量机[J].软件学报,2007,18(11):2719-2727. 被引量:15
  • 4Yao Y Y. Perspectives of Granular Computing/! Proc of the IEEE International Conference on Granular Computing. Beijing, China, 2005, 1:85-90.
  • 5Xu C F, Wang J L. An Efficient Incremental Algorithm for Frequent hemsets Mining in Distorted Databases with Granular Computing// Proc of the International Conference on Web Intelligence. Hong Kong, China, 2006:913-918.
  • 6Yao Y Y. Granular Computing for Web Intelligence and Brain Infor- matics// Proc of the International Conference on Web Intelligence. Silicon Valley, USA, 2007 : 1-4.
  • 7Tang Y C, Jin B, Zhang Y Q. Granular Support Vector Machines for Medical Binary Classification Problems/! Proc of the IEEE Sym-posium on Computational Intelligence in Bioinformatics and Compu- tational Biology. La Jolla, USA, 2004:73-78.
  • 8Wang W J, Guo H S, Jia Y F, et al. Granular Support Vector Ma- chine Based on Mixed Measure. Neurocomputing, 2013, 101 (4) : 116-128.
  • 9Guo H S, Wang W J, Men C Q. A Novel Learning Model-Kernel Granular Support Vector Machine// Proc of the International Con- ference on Machine Learning and Cybernetics, Baoding, China. 2009, II: 930-935.
  • 10Tang Y C, Jin B, Zhang Y Q. Granular Support Vector Machines with Association Rules Mining for Protein Homology Prediction. Ar- tificial Intelligence in Medicine, 2005, 35( 1 ) : 121-134.

共引文献19

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部