摘要
文章以国家5A级景区庐山为例,利用网络爬虫技术获取该旅游景区全部酒店的名单及其相关属性数据,分析酒店的空间分布、网络预定发展现状及存在的问题,并采用计量经济模型研究了酒店网络预定的影响因素。研究发现:庐山风景区酒店主要在牯岭镇内和沿交通干线分布;尽管酒店网络预定仍处于初级阶段,但目前所获得的游客反馈总体较好;酒店规模、照片数量、成立时长和到最近景点的时间距离均与酒店网络预定数量正相关,客房价格和星级则与其负相关。
Lushan Mountain is a National 5 A Level tourist attraction.Taking it as a case study,this paper applies the web crawler technology to obtain the relevant data from all hotels in Lushan Mountain,and analyses the spatial distribution of hotels,the development status of online booking and problems,then uses the econometric models to examine the influencing factors of hotel online booking.The results show that the hotels in Lushan Mountain are mainly located in Guling town as well as along the main communications arteries;the development of hotel online booking in Lushan scenic area is still on the initial stage,but the current received feedback is satisfying;hotel sizes,the number of photos,established time and the time cost walking from the hotel to the nearest attraction are positively related to the number of hotel online booking,while room rate and hotel rating are negatively associated with it.
作者
郭泉恩
周佳蜜
罗丹利
GUO Quan-en;ZHOU Jia-mi;LUO Dan-li(InstituteofTourism,SchoolofTourism,NanchangUniversity,Nanchang330000China)
出处
《广西经济管理干部学院学报》
2019年第4期43-50,共8页
Journal of GuangXi Cadres College of Economic and Management
基金
江西省社会科学规划项目“乡村振兴战略下江西省革命老区旅游发展及其模式研究”(编号:18GL32)
江西省高校人文社会科学重点研究基地项目“‘互联网+’时代下酒店在线预订影响机制研究”(编号:JD18024)
2018年国家级大学生创新创业训练项目“‘互联网+’时代旅游酒店销售影响因素分析”(编号:201810403042)
关键词
酒店
网络预定
旅游景区
国外经验
庐山
Hotels
Online Booking
Tourism Spot
Overseas Experience
Lushan Mountain