期刊文献+

一类具有庇护效应的非自治的生物捕食模型

A Non-autonomous Predator-prey Model with Refuge Effect
下载PDF
导出
摘要 庇护效应广泛的存在于捕食模型中,被捕食者为寻求自身的生存采取"庇护"的方式,是一种合理的自然现象.将庇护效应引入到捕食模型能更贴切地模拟实际环境中的生物种群关系.该文研究了一类具有庇护效应的非自治生物捕食模型的周期解,选取指标为0的Fredholm映射L,以及■上的L-紧的算子N,同时估计其先验界,构造X上的有界开子集Ω,利用Mawhin重合度理论中的连续性定理,得到该模型存在周期解的充分条件. As refuge effect widely exists in the predator model,it is a very reasonable natural phenomenon for the prey to take refuge in order to seek its own survival.Therefore,the dynamics of a predatorprey model with refuge effect seems to be more realistic if the different growth rate for the prey populations in refuge region and predatory region are considered respectively.Thus,a Fredholm map L with index 0 and the L-compact operator N on■are selected and their prior bounds are estimated in this paper.By constructing a bounded open subsetΩon X and using the continuity theorem in Mawhin coincidence theory,sufficient conditions for the existence of periodic solutions in the model are obtained.
作者 夏永辉 申艳枫 XIA Yonghui;SHEN Yanfeng(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua321004,China)
出处 《徐州工程学院学报(自然科学版)》 CAS 2019年第4期1-7,共7页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 国家自然科学基金项目(11671176) 福建省自然科学基金项目(2018J01001) 华侨大学启动基金项目(Z16J0039)
关键词 捕食模型 周期解 庇护效应 非自治 predator-prey model periodic solution refuge effect non-autonomous
  • 相关文献

参考文献1

二级参考文献17

  • 1Andronov, A., Leontovich, E.A., Gordon, I.I., Maier, A.G. Theory of Bifurcations of Dynamical Systems on a Plane. Israel Program for Scientific Translations, Jerusalem, 1971.
  • 2Andrews, J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng, 10:707-723 (1968).
  • 3Bogdanov, R. Bifurcation of a limit cycle for a family of vector fields on the plane. Selecta Math. Soviet.,1:373-388 (1981).
  • 4Bogdanov, R. Versal deformations of a singular point on the plane in the case of zero eigenvalues. Selecta Math. Soviet., 1:389-421 (1981).
  • 5Chow, S.N., Hale, J.K. Methods of Bifurcatioa Theory. Springer-Verlag, New York, Heidelbeg, Berlin,1982.
  • 6Collings, J.B. The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol., 36:149-168 (1997).
  • 7Freedman, H.I., Wolkowicz, G.S,K. Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48:493-508 (1986).
  • 8Holling, C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomolog. Soc. Can, 45:3-60 (1965).
  • 9Mischaikow, K., Wolkowicz, G.S.K. A predator-prey system involving group defense: a connection matrix approach. Nonlinear Anal., 14:955-969 (1990).
  • 10Rosenzweig, M.L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science, 171:385-387 (1971).

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部