期刊文献+

融合语法规则的Bi-LSTM中文情感分类方法研究 被引量:6

Chinese Sentiment Classification Method with Bi-LSTM and Grammar Rules
原文传递
导出
摘要 【目的】提出一种融合语法规则的情感分类方法,提高中文文本情感分类的准确率。【方法】将中文语法规则以约束的形式同Bi-LSTM结合,通过规范句子相邻位置的输出模拟句子层次中非情感词、情感词、否定词和程度词的语言作用。【结果】相较于前沿的RNN、LSTM、Bi-LSTM模型,融合中文语法规则的Bi-LSTM模型准确率可达91.2%,在准确率方面得到较好的提升。【局限】实验数据集来源相对单一,只选取酒店评论数据集,在其他数据集上方法的有效性需要进一步验证。【结论】本文提出的情感分类方法融合了中文语法规则,进一步提升了情感分类的准确率。 [Objective]This paper proposes a new classification method based on grammar rules,aiming to improve the accuracy of sentiment analysis for Chinese texts.[Methods]Firstly,we combined the Chinese grammar rules with Bi-LSTM in the form of constraints and standardized the adjacent positions of sentences from the experimental corpus.Then,we generated the linguistic functions of non-emotional,emotional,negative,and degree words at sentence level.[Results]Compared with the RNN,LSTM and Bi-LSTM models,the accuracy of our model reached upto 91.2%.[Limitations]The experimental data was only collected from the hotel reviews.More research is needed to examine the performance of this model on other data sets.[Conclusions]The proposed method improves the accuracy of sentiment classification for Chinese.
作者 卢强 朱振方 徐富永 国强强 Lu Qiang;Zhu Zhenfang;Xu Fuyong;Guo Qiangqiang(School of Information Science and Electrical Engineering,Shandong Jiaotong University,Ji’nan 250357,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第11期99-107,共9页 Data Analysis and Knowledge Discovery
基金 国家社会科学基金项目“面向公共安全事件舆情文本的语义识别与决策支持研究”(项目编号:19BYY076) 教育部人文社会科学规划项目“基于内容和用户行为分析的网络舆情情感分析技术研究”(项目编号:14YJC860042) 山东省社会科学规划项目“网络舆情分析与导控中的文本语义识别与推理机制研究”(项目编号:19BJCJ51)的研究成果之一
关键词 语法规则 情感分类 Bi-LSTM Grammar Rules Sentiment Classification Bi-LSTM
  • 相关文献

参考文献5

二级参考文献33

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Hu M,Liu B.Opinion Extraction and Summarization on the Web[C]∥AAAI,2006,7:1621-1624.
  • 3Liu B.Sentiment Analysis and Opinion Mining[J].Synthesis Lectures on Human Language Technologies,2012,5(1):1-167.
  • 4Ku L W,Wu T H,Lee L Y,et al.Construction of an Evaluation Corpus for Opinion Extraction[J].Proc.of the Fifth NTCIR Wksp.on Evaluation of Information Access Technologies:Information Retrieval,Question Answering,and Cross-Lingual Information Access,2005:513-520.
  • 5Strapparava C,Mihalcea R.Learning to identify emotions in text[C]∥Proceedings of the 2008ACM symposium on Applied computing.ACM,2008:1556-1560.
  • 6Neviarouskaya A,Prendinger H,Ishizuka M.SentiFul:A Lexicon for Sentiment Analysis[J].Affective Computing,IEEE Transactions on,2011,2(1):22-36.
  • 7Pang B,Lee L.Opinion Mining and Sentiment Analysis[J].Foundations and Trends in Information Retrieval,2008,2(1-2):1-135.
  • 8Pang B,Lee L,Vaithyanathan S.Thumbs up?:Sentiment Classification Using Machine Learning Techniques[C]∥Proceedings of the ACL-02conference on Empirical Methods in Natural language processing-Volume 10.Association for Computational Linguistics,2002:79-86.
  • 9Jiang L,Yu M,Zhou M,et al.Target-dependent Twitter Sentiment Classification[C]∥Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies-Volume 1.Association for Computational Linguistics,2011:151-160.
  • 10Mohammad S M,Kiritchenko S,Zhu X.NRC-Canada:Building the State-of-the-art in Sentiment Analysis of tweets[C]∥Proceedings of the Seventh International Workshop on Semantic Evaluation Exercises(SemEval-2013),June 2013,Atlanta,USA.

共引文献595

同被引文献57

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部