期刊文献+

基于全变差模型的自适应参数选择方法

Adaptive Parameter Selection Method Based on Total Variation Model
下载PDF
导出
摘要 针对全变差去噪模型中不能自适应调整正则项参数的缺点,基于Chambolle对偶算法,提出一种自适应对偶投影算法。通过构建全变差模型中的权重与正则项和逼近项之间的函数关系,根据不动点迭代理论,得出权重的更新准则。对于模型中新引入的参数选取问题,根据多元线性回归模型拟合出新参数的选取模型,通过显著性检验,验证了该拟合模型的有效性。实验结果表明,该算法能有效改善去噪效果。 As for the disadvantage of not being able to adaptively adjust the regularization parameters in the total variation model,an adaptive dual projection algorithm was proposed based on Chambolle’s dual algorithm.With the fixed point iteration theory,the relationship among weights,regularization term and approximation term was built,and the update criterion of weight was obtained.For the proposed parameter selection problem,the multiple linear regression model was used to fit the selection model of new parameter.The potential of the proposed method was verified through the significance test.The experimental results show that the algorithm is effective in improving the denoising effect.
作者 魏海广 赵玉 卢立玄 张涛 WEI Haiguang;ZHAO Yu;LU Lixuan;ZHANG Tao(School of Mathematics and Physics,Anhui University of Technology,Ma’anshan 243032,China)
出处 《安徽工业大学学报(自然科学版)》 CAS 2019年第3期250-256,共7页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金项目(61701004) 安徽省自然科学基金项目(1708085QA15)
关键词 图像去噪 全变差 Chambolle对偶 能量泛函 多元线性回归 自适应 image denoising total variation Chambolle duality energy functional multivariate linear regression adaptive
  • 相关文献

参考文献3

二级参考文献52

  • 1Vogel Curtis R. Computational Methods for Inverse Problems [ M]. Philadelphia, Pennsylvania: Society for Industrial and Ap- plied Mathematics,2002.1 - 183.
  • 2Aubert G, Kornprobst Pierre. Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[ M ]. New York, USA: Springer-Verlag, 2006.1 - 371.
  • 3Liu X W,Huang L H, Guo Z Y. Adaptive fourth-order partial differential equation filter for image denoising [ J ]. Applied Mathematics Letters, 2011,24 (8) : 1282 - 1288.
  • 4Dykes L,Reichel L. Simplified GSVD computations for the so- lution of linear discrete iU-posed problems[ J] .Journal of Com- putational and Applied Mathematics, 2014,255( 1 ) : 15 - 27.
  • 5Beck Amir, Teboulle Marc. A fast dual proximal gradient algo- rithm for convex minimization and applications[ J]. Operations Research Letters,2014,42( 1 ) : 1 - 6.
  • 6Duran Joan, Coll Bartomeu, Sbert Catalina. Chambolle' s pro- jection algorithm for total variation denoising[ J]. Image Pro- cessing on Line,2013,2013(3) :301 - 321.
  • 7Dai Y H, Kou C X. A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search [ J] .SIAM Journal on Optimization,2013,23(1) :296- 320.
  • 8Sun Wenyu, Yuan Yaxiang. Optimization Theory and Methods Nonlinear Programming[M]. New York, USA: Springer Sci- ence Business Media,2006,1 - 687.
  • 9Bai zhengiian, Donatelli Marco, Capizzano Stefano Serra. Fast preconditioners for total variation deblurring with anti-reflec- tive boundary conditions[ J]. SIAM Journal on Matrix Analysis and Applications,2011,32(3) :785 - 805.
  • 10J. E. Dennis, Robert B. Schnabel. Numerical Methods for Un- constrained Optimization and Nonlinear Equations [ M ]. Philadelphia: SIAM, 1996.1 - 378.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部