期刊文献+

时空轨迹数据获取和压缩技术研究与实现 被引量:1

Research and implementation of time-space trajectory data acquisition and compression technology
下载PDF
导出
摘要 对于传统的爬虫技术,爬取轨迹数据时存在较低的覆盖率和效率,文中基于云计算技术架构构建了一套高效的分布式多源异构时空数据爬虫系统。由于系统以分秒级别获取基于timestamp的轨迹数据,而存储、计算等无法支持巨大的数据量,文中在TDTR算法的基础上,提出了一种基于T-Map(MCTD)的距离计算公式计算轨迹间距离的轨迹压缩算法(STCA),减少了需要的存储空间。 For the traditional crawler technology,there is a low coverage and efficiency when crawling the trajectory data.An efficient multi-source heterogeneous and spatiotemporal data crawler system is built based on Ali’s cloud computing technology architecture.Since the timestamp-based trajectory data is obtained in the system at the sub-second level,the huge data volume cannot be supported by storage,calculation,etc.Based on the TD-TR algorithm,a method is proposed based on the T-Map measurement formula to calculate the MRTD distance between the trajectories.The trajectory compression algorithm educes the required storage space.
作者 李顺 张圣华 朱美正 高龙 LI Shun;ZHANG Sheng-hua;ZHU Mei-zheng;GAO Long(0x09North China Institute of Computer Technology,Beijing 100083,China;0x09Chinese people’s Liberation Army Air Force Command College,Beijing 100083,China)
出处 《信息技术》 2020年第1期75-78,84,共5页 Information Technology
关键词 模式挖掘 分布式 T-Map pattern mining distributed T-Map
  • 相关文献

参考文献4

二级参考文献87

  • 1王家耀,魏海平,成毅,熊自明.时空GIS的研究与进展[J].海洋测绘,2004,24(5):1-4. 被引量:67
  • 2Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 3Laube P, Imfeld S, Weibel R. Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 2005, 19 (6): 639-668.
  • 4Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Pearson Addison-Wesley, 2006: 60-65.
  • 5Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. Foundations of Data Orga- nization and Algorithms, 1993, 730: 69-84.
  • 6Chen L, Ozsu M, Oria V. Robust and fast similarity search for moving object trajectories//Proceedings of the 2005 ACM SIGMOD International Conference on Man- agement of Data. New York, NY, USA: ACM, 2005: 491-502.
  • 7Lee S, Chun S, Kim D, et al. Similarity search for multidi- mensional data sequences//Proceedings of the 16th Inter- national Conference on Data Engineering. Washington D. C. USA: IEEE Computer Society, 2000: 599-608.
  • 8Elnekave S, Last M, Maitnon O. Incremental clustering of mobile objects//Proceedings of the 2007 IEEE 23rd In- ternational Conference on Data Engineering Workshop. Washington, DC, USA: IEEE Computer Society, 2007:585-592.
  • 9Sankoff D, Kruskal J. Time Warps, String Edits, and Mac- romolecules: The Theory and Practice of Sequence Com- parison. MA, USA: Addison-Wesley, 1983.
  • 10Agrawal R, Lin K I, Sawhney H S, et al. Fast similarity Ssearch in the presence of noise, scaling, and translation in time-series databases//Proceedings of the 21th Interna- tional Conference on Very Large Data Bases. San Francis- co, CA, USA: Morgan Kaufmann Publishers Inc., 1995: 490-501.

共引文献182

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部