期刊文献+

个性化新闻推荐技术研究综述 被引量:22

Survey of Research on Personalized News Recommendation Techniques
下载PDF
导出
摘要 新闻每时每刻都在发生,阅读新闻已经成为很多人的习惯。新闻媒体众多,网络媒体凭其迅捷性和便利性成为很多人的首选。网络新闻众多导致新闻过载,这就迫切需要个性化的新闻推荐系统,帮助用户快速地找到感兴趣的新闻。伴随着新闻大数据的产生和移动互联网的蓬勃发展,个性化新闻推荐迎来了新的机遇和挑战。首先介绍了个性化新闻推荐的挑战性;然后提出了个性化新闻推荐系统的基本框架,该框架包含新闻建模、用户建模、推荐引擎和用户接口四个模块,并以该框架为基础,分别综述了每个模块的研究进展,列举了现有的个性化新闻推荐系统中四个模块所采用的技术;最后总结了常用数据集、实验方法、评测指标和未来的研究方向。 News happens all the time and many people have developed the habits of reading news. Among numerous news media, network media gets preference for its convenience and celerity. However, too much net-news results in information overload. So it is crucial to develop personalized news recommendation to help users pick up interesting news rapidly. With the growing of big news data and development of mobile internet, there are new chances and challenges in the domain of personalized news recommendation. Firstly, the challenges of personalized news recommendation are introduced. Secondly, an architecture of personalized news recommendation is proposed, which includes news profile, user profile, recommendation engine and user interface. Then based on this architecture,research development of each component is set forth. Thirdly, the methods of existing system of personalized news recommendation according with the architecture are displayed. Lastly, the datasets, evaluation methods, metrics and the possible research directions in the future are concluded.
作者 王绍卿 李鑫鑫 孙福振 方春 WANG Shaoqing;LI Xinxin;SUN Fuzhen;FANG Chun(School of Computer Science and Technology,Shandong University of Technology,Zibo,Shandong 255091,China)
出处 《计算机科学与探索》 CSCD 北大核心 2020年第1期18-29,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61602280~~
关键词 新闻推荐 个性化 推荐系统 news recommendation personalization recommendation system
  • 相关文献

参考文献3

二级参考文献79

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献1093

同被引文献149

引证文献22

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部