期刊文献+

基于Jaccard和LPA的社团划分算法 被引量:4

Community division algorithm based on Jaccard similarity algorithm and LPA
下载PDF
导出
摘要 社会网络记录网络中各个实体间的关联,社团划分是对社会网络中的节点关系的区分归纳。为了提高社团划分的准确率和效率,基于Jaccard相似度算法和标签传播算法LPA,设计了一种适用于非重叠社团的划分算法JLCD。该算法首先针对Jaccard相似度算法的计算结果中存在较多关联性的节点但相似度为零或无法计算的情况,引入了SimRank算法的思想对Jaccard相似度算法进行了改进,并用改进的Jaccard算法来计算节点相似度从而得到初始社团;然后用LPA算法基于初始社团来完成最终的社团划分,以此解决LPA在初始标签分配上消耗资源大的问题,并提高社团划分的稳定性。海豚社会网络、足球队赛事网络和人工生成数据集的社团划分结果表明:JLCD方法能够有效地对社团结构进行划分,并且具有较高的准确度和较低的时间复杂度。 The social networks record the associations between the various entities in the networks,and the community division is the differentiation and the induction of the node relationships in the social networks.To improve the accuracy and the efficiency of the community division,based on Jaccard similarity algorithm and label propagation algorithm(LPA),a community division algorithm JLCD suitable for non-overlapping communities is designed.Firstly,the algorithm introduces the idea of SimRank algorithm to improve the Jaccard similarity algorithm in the case that there are many related nodes in the calculation result of Jaccard similarity algorithm but their similarities are zero or cannot be calculated,thus the improved Jaccard algorithm is used to calculate node similarity to get the initial communities.Then,the LPA is used to complete the final community division based on the initial communities,so as to solve the problems that the resource consumption is large in the initial label allocation and improve the stability of the community division.The community division results of dolphin social network,football team match network and artificially generated datasets show that the JLCD algorithm can effectively divide the community structure and has higher accuracy and lower time complexity.
作者 崔海涛 李玲娟 CUI Haitao;LI Lingjuan(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2019年第6期79-85,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点研发计划专项(2017YFB1401302,2017YFB0202200) 国家自然科学基金(61572260、61872196)资助项目
关键词 社团划分 Jaccard相似度 LPA community division Jaccard similarity label propagation algorithm(LPA)
  • 相关文献

参考文献5

二级参考文献37

  • 1解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 2李?,山秀明,任勇.具有幂率度分布的因特网平均最短路径长度估计[J].物理学报,2004,53(11):3695-3700. 被引量:18
  • 3倪小军,张宁,王美娟.基于MPI的中国教育网最短路并行算法[J].计算机工程与应用,2006,42(12):135-137. 被引量:5
  • 4Sahon G, Wong A, Yang C S. A vector space model for information retrieval[J]. Communications of the ACM, 1975.
  • 5Jeh G, Widom J. SimRank: A measure of structural-context similarity[C]//SIGKDD, 2002.
  • 6Yin X, Han J, Yu P. Linkclus: Efficient clustering via heterogeneous semantic links[C]//VLDB, 2006.
  • 7Yin X, Han J, Yu P. Cross-relational clustering with user's guidance[C]//SIGKDD, 2005.
  • 8Small H. Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973.
  • 9Kessler M M. Bibliographic coupling between scientific papers[J]. American Documentation, 1963.
  • 10Amsler R. Applications of citation-based automatic classification, Technical Report 72-14[R]. Linguistic Research Center, 1972.

共引文献25

同被引文献34

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部