期刊文献+

基于改进卷积神经网络的极光图像分类算法研究 被引量:8

Aurora image classification algorithm based on improved convolution neural network
下载PDF
导出
摘要 极光包含丰富的磁层和日地电磁活动以及能量耦合等空间物理信息,是一种自然放光现象。对极光图像的正确分类有助于探索太阳与地球及地球自身磁场的奥秘。文中针对极光图像分类问题提出一种基于神经网络改进的算法,首先采用迁移学习将在大规模数据集上训练过的VGG16网络用于极光数据库,然后结合VGG16和密集连接的思想提出一种改进的Dense-VGG网络,用该网络提取极光图像的特征,并实现极光图像的自动分类。在中国北极黄河站拍摄的两个极光数据库上进行了实验,其中8 001幅准确率达到96.54%,38 044幅准确率达到98.99%,证明该算法能有效提高极光图像分类准确率。 Aurora contains abundant spatial physical information,such as magnetosphere,solar-geomagnetic activities and energy coupling,is a natural luminescence phenomenon.The correct classification of aurora images is helpful for people to explore the mysteries of the magnetic fields of the sun and the Earth,as well as the Earth itself.An improved algorithm based on the neural network is proposed for aurora image classification.Firstly,the VGG16 network trained on large-scale datasets is used for the aurora database by migration learning.Then,an improved Dense-VGG network is put forward by combining VGG16 and dense connection.The network is used to extract aurora image features and realize automatic aurora image classification.Experiments have been carried out in two aurora databases taken at the Yellow River Station in the Arctic of China.Experimental results show that the accuracy of 8 001 aurora images is 96.54%,and that of 38 044 aurora images is 98.99%.It is proved that the algorithm can effectively improve the accuracy of aurora image classification.
作者 李彦枝 陈昌红 谢晓芳 LI Yanzhi;CHEN Changhong;XIE Xiaofang(Jiangsu Key Laboratory of Image Processing and Image Communication,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;College of Electrical Engineering,Laiwu Vocational and Technical College,Laiwu 271100,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2019年第6期86-93,共8页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61501260) 江苏省研究生科研与实践创新计划(KYCX17_0776) 江苏高校优势学科建设工程(信息与通信工程)资助项目
关键词 极光图像 卷积神经网络 特征提取 密集连接 分类 aurora image convolutional neural network feature extraction dense connection classification
  • 相关文献

参考文献1

共引文献7

同被引文献81

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部