期刊文献+

一类具有Holling Ⅲ功能反应的时滞食饵-捕食系统正周期解的存在性

Existence of Positive Periodic Solutions for a Delayed Predator-Prey System with Holling Ⅲ Functional Response
下载PDF
导出
摘要 利用重合度理论中的延拓定理,分析了一类时滞食饵-捕食系统正周期解的存在性,并给出了正周期解的存在性条件。 By using the continuation theorem of coincidence degree theory,an analysis has been made of the existence of positive periodic solutions for a class of delayed predator-prey systems,thus working out the existence conditions of positive periodic solutions.
作者 罗超良 侯爱玉 罗嘉程 刘清华 曾彪 LUO Chaoliang;HOU Aiyu;LUO Jiacheng;LIU Qinghua;ZENG Biao(College of Science,Hunan University of Technology,Zhuzhou Hunan 412007,China;School of Urban Planning and Municipal Engineering,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《湖南工业大学学报》 2020年第1期9-13,共5页 Journal of Hunan University of Technology
基金 国家自然科学基金资助项目(11801162) 湖南省教育厅科学研究基金资助项目(17C0467,17C0468)
关键词 食饵-捕食系统 时滞 周期解 延拓定理 predator-prey system time delay periodic solution continuation theorem
  • 相关文献

参考文献3

二级参考文献22

  • 1Gaines R E, Mawhin J L. Coincidence, Degree and Nonlinear Differential Equations[M]. Berlin: Springer, 1977: 39-40.
  • 2Martin Bohner, Meng Fan, Jimin Zhang. Existence of periodic solutions in predator prey and competition dynamic systems[J]. Nonlinear Analysis: Real World Applications, 2006, 7: 1193-1204.
  • 3Qiming Liu, Rui Xu. Periodic solution for a delayed three-species food-chain system with Holling type-II functional response[J]. International Journal of Mathematics and Mathematical Sciences Volume, 2003, 64: 4057-4070.
  • 4郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].济南:山东科技出版社,2006:29-32.
  • 5Moussaoui A, Bassaid S, Dads EL H A. The impact of water level fluctuations on a delayed prey-predator model[ J ]. Non- linear Analysis : Real World Applications ,2015,21 : 170-184.
  • 6Maynard-Smith J. Models in Ecology[ M ]. Cambridge:Cambridge University Press, 1974.
  • 7Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation [ J ]. Mem Ent Soc Can, 1965,97 (45) : 1-60.
  • 8Smith F E. Population dynamics in Daphnia magna and a new model for population growth [ J ]. Ecology, 1963,44 (4) :651 -663.
  • 9Gilpin M E, Ayala F J. Global models of growth and competition [ J ]. Proc Nat Acad Sei, 1973,70 (12) :3590-3593.
  • 10Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [ M ]. New York :Springer-Verlag, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部