1Ward J S, Ramanathan K, Hasoon F S, et al. A 21.5% efficient Cu(In, Ga) Sez thin-film concentrator solar cell[J]. Progress in Photovoltaics: Research and Applications, 2002, 10(1): 41-46.
2Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu (In, Ga) Se2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics.- Research and Applications, 2011, 19(7): 894-897.
3JagerWaldau A. Progress in ehalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production [J]. Solar Energy Materials and Solar Cells, 2011, 95 (6) : 1509-1517.
4Ito K,Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Jpn. J. Appl. Phys, , 1988, 27(11): 2094-2097.
5Seol J S, Lee S Y, Lee J C', et al. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by RF magnetron sputtering process [J]. Solar Energy Materials and Solar Cells, 2003, 75(1): 155-162.
6Shin B,Gunawan O, Zhu Y, et al. Effect of Cu/(Znq- Sn) ratio on the properties of Co-evaporated CuzZnSnSe4 thin films[J]. Solar Energy Materials and Solar Cells, 2013, 21(1): 72-76.
7Katagiri H,Sasaguchi N, Hando S, et al. Preparation and evaluation of Cuz ZnSnS4 thin films by sulfurization of E-B evaporated precursors [J ]. Solar Energy Materials and Solar Ceils, 1997, 49(1/4): 407-414.
8Katagiri H. CuzZnSnS4 thin film solar cells[J]. Thin Solid Films, 2005 (480): 426-432.
9Katagiri H,Jimbo K, Yamada S, et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl. Phys. Exp., 2008, 1(4): 041201-1-041201-2.
10Fernandes P A,Salome P M P, da Cunha A F. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering[J]. J. Alloys Comp., 2011, 509(28):7600-7606.