期刊文献+

基于机器视觉的立铣刀磨损检测方法研究 被引量:10

Research on wear detection method of endmill based on machine vision
下载PDF
导出
摘要 针对传统立铣刀视觉检测流程中图像定位及利用圆弧拟合边缘不精确的问题,提出一种垂直分布的双镜头视觉检测方法,开发了一套加工中心立铣刀机器视觉检测系统。在自适应阈值分割及边缘检测算法的基础上,通过筛选及合并共线轮廓,拟合直线获取端面刀刃偏转角度,驱动电动机精确定位后采集铣刀侧面图像。基于立铣刀投影几何模型复原侧面轮廓,在侧面摄像头所获取的图像上拟合原轮廓曲线,结合区域求差算法计算出磨损参数及位置信息。实验表明,此检测方法可以精确拟合圆周刃轮廓,提取磨损缺陷区域,检测精度达到0.01 mm,实现了加工中心立铣刀在位检测。 Aiming at the problem of image positioning in the visual inspection process of traditional end mill and the inaccuracy of the arc fitting edge,a vertical distributed dual-lens vision detection method is proposed,and a machine vision inspection system for machining center end mill is developed.On the basis of adaptive threshold segmentation and edge detection algorithm,by sifting and merging the collinear contours,the straight line is fitted to obtain the deflection angle of the end face,and the motor is accurately positioned to collect the flank image of the milling cutter.The flank contour is restored based on the end mill projection geometry model,the original contour curve is fitted on the image acquired by the flank camera,and the wear parameter and position information are calculated by the regional difference algorithm.Experiments show that the detection method can accurately fit the contour of the circumferential edge and extract the wear defect area.The detection accuracy reaches 0.01 mm,and the in-situ detection of the machining center end mill is realized.
作者 刘建春 江骏杰 邹朝圣 LIU Jianchun;JIANG Junjie;ZOU Chaosheng(School of Mechanical and Automotive Engineering,Xiamen University of Technology,Xiamen 361024,CHN;Xiamen Wanjiu Technology Co.,Ltd.,Xiamen 361022,CHN)
出处 《制造技术与机床》 北大核心 2020年第1期136-140,共5页 Manufacturing Technology & Machine Tool
基金 2018年福建省科技计划项目高校产学合作项目(2018H6025) 2018厦门市科技计划项目(3502Z20183051)
关键词 刀具磨损 机器视觉 投影轮廓模型 自动化检测 tool wear machine vision projection contour model automated inspection
  • 相关文献

参考文献3

二级参考文献12

共引文献4

同被引文献98

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部