期刊文献+

基于深度学习的通信辐射源调制样式识别方法

Deep-learning-based modulation pattern recognition method for communication emitter
下载PDF
导出
摘要 针对自动调制分类中通信辐射源调制方式识别率低问题,提出了一种基于短时傅里叶变换(STFT)和卷积神经网络(CNN)结合的方法.该方法首先对通信辐射源信号进行小波阈值降噪,去除混在信号中的高斯白噪声;然后经过短时傅里叶变换,将一维时域信号变换成二维时频域图像,利用临近插值法降维;将时频图输入卷积神经网络进行训练,通过对超参数的选取,得到优化的卷积神经网络;最后采用softmax函数给出识别结果.仿真结果表明,当信噪比(SNR)为0 dB时,利用本文识别方法的宏平均值达到0.874以上,其性能显著优于传统方法. Aiming at the problem of low recognition rate of communication emitter modulation pattern in automatic modulation classification, this paper proposes a method based on the combination of short-time Fourier transform(STFT) and convolutional neural network(CNN). This method first performs wavelet threshold noise reduction on the communication radiation source signal to remove white Gaussian noise mixed in the signal. And then by using STFT, the one-dimensional time-domain signal is converted into a two-dimensional time-frequency domain image, using neighbor interpolation to reduce dimensionality. The time-frequency map is also input to the CNN for training, and the optimal CNN is obtained by selecting the hyper-parameters. Finally, the softmax function is used to give the recognition results. Simulation results show that when the signal-to-noise ratio(SNR) is 0 dB,the average value of macros identified by this recognition method is above 0.874, and its performance is significantly better than that of the traditional method.
作者 董睿杰 杨瑞娟 李东瑾 彭岑昕 王国超 DONG Ruijie;YANG Ruijuan;LI Dongjin;PENG Cenxin;WANG Guochao(Air Force EarlyWarning Academy,Wuhan 430019,China;No.95174 Unit,the PLA,Wuhan 430040,China)
机构地区 空军预警学院 [
出处 《空军预警学院学报》 2019年第6期427-431,441,共6页 Journal of Air Force Early Warning Academy
基金 国防科技创新特区基金资助项目(17H863042T00302201)
关键词 通信辐射源 调制样式识别 小波阈值降噪 短时傅里叶变换 卷积神经网络 communication emitter modulation pattern recognition wavelet threshold denoising STFT convolutional neural network
  • 相关文献

参考文献2

二级参考文献20

  • 1GaiGuanghong QuLiangsheng.TRANSLATION-INVARIANT BASED ADAPTIVE THRESHOLD DENOISING FOR IMPACT SIGNAL[J].Chinese Journal of Mechanical Engineering,2004,17(4):552-555. 被引量:4
  • 2JOHNSON M T,YUAN Xiaolong,REN Yao.Speech signal enhancement through adaptive wavelet thresholding[J].Speech Communication,2007,49,123-133.
  • 3SHI Y,EBERHART R C.A modified particle swarm optimizer[C]// Proceedings of the IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,May 4-9,1998.Piscataway,New Jersey,IEEE,1998:67-73.
  • 4The Case Western Reserve University Bearing Data Center Website[EB/OL].http://www.eecs.cwru.edu/ laboratory/bearing/.
  • 5DONOHO D L,JOHNSTONE I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometika,1994,81(3):425-455.
  • 6DONOHO D L,JOHNSTONE I M.Adapt to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Association,1995,90(432):1 200-1 224.
  • 7DONOHO D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 8钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 9史东承,韩玲艳,于明会.基于HMM/SVM的音频自动分类[J].长春工业大学学报,2008,29(2):178-182. 被引量:9
  • 10何存富,刘溯,刘增华,张易农,吴斌.小波降噪在钢绞线缺陷检测中的应用[J].机械工程学报,2008,44(7):118-122. 被引量:22

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部