期刊文献+

列车车体传热系数数值计算方法对比分析 被引量:6

Comparative study on numerical evaluation of the heat transfer coefficient of train body
下载PDF
导出
摘要 车体传热系数是检验列车保温、隔热性能的重要指标之一,是采暖、空调等设备选型的主要依据。依靠高精度数值计算方法,可在列车总体设计阶段,对其车体隔热性能进行仿真及结构优化,避免整车制造完成后才能进行车体传热性能评估的局限性。以某地铁列车侧墙为例,分别采用二维典型断面、二维断面拉伸以及三维典型区域3种数值方法对其传热系数进行仿真计算,并比较分析各方法对侧墙以及整车传热系数计算结果的影响。研究结果表明:二维典型截面法比二维截面拉伸法小7.2%,比三维车体传热系数小8.9%。采用二维典型截面法对列车车体传热系数进行数值计算所需计算资源最小,但无法反应真实车体复杂三维结构传热特性,计算结果较其他方法偏小;而三维典型区域计算考虑了第3方向的热对流,以及车体冷桥结构的影响,结果更接近真实车体传热过程,但计算资源消耗大。本研究为列车车体传热系数计算方法的合理选择及误差分析提供参考依据。 The heat transfer coefficient is one of the important indicators for evaluating the thermal insulation performance of train body. In this paper, the heat transfer coefficient of the side wall of the vehicle body with two-dimensional, two-dimensional stretching, and three-dimensional geometric models was computed and analyzed. The results show that the heat transfer coefficient of the two-dimensional method is 7.2% smaller than that of the two-dimensional stretching method, and is 8.9% smaller than that of the three-dimensional method.The heat transfer coefficient of the two-dimensional stretching method is 0.18% smaller than that of the three-dimensional method. Two-dimensional and two-dimensional stretching underestimate the effective heat transfer rate and increase the heat transfer resistance, but can effectively reflect the cold bridges in heat transfer duringcomputation. The actual geometric heat transfer is calculated by using the three-dimensional geometric model as it considers the heat transfer in the third direction, and the result is closer to the experimental results of real train body. This study provides a theoretical basis for the reasonable selection of numerical methods for future research.
作者 伍钒 丁叁叁 梁习锋 王哲 李雪亮 周伟 闫磊 WU Fan;DING Sansan;LIANG Xifeng;WANG Zhe;LI Xueliang;ZHOU Wei;YAN Lei(CRRC Qingdao Sifang Co.Ltd,Qingdao 266111,China;School of Traffic&Transportation Engineering,Central South University,Changsha 410075,China;Key Laboratory of Traffic Safety on Track of the Ministry of Education,Changsha 410075,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2019年第12期3086-3093,共8页 Journal of Railway Science and Engineering
基金 国家“十三五”重点研发计划资助项目(2017YFB1201103) 中南大学研究生自主探索创新资助项目(2018zzts504)
关键词 传热系数 K值 热对流 热传导 heat transfer coefficient K value heat convection heat conduction
  • 相关文献

参考文献7

二级参考文献26

  • 1吴俊云,王刚,刘训海,邬志敏,陈芝久.空调客车厢体结构传热数值分析[J].上海理工大学学报,2005,27(4):287-290. 被引量:11
  • 2徐瑛,陈志刚,刘蔚巍.铁路客车空调负荷研究[J].制冷空调与电力机械,2006,27(5):73-75. 被引量:2
  • 3刘应清 蔡德源 陆大庆.客车车体传热系数计算方法的探讨.铁道学报,1985,(9):1-9.
  • 4李世永.关于客车车体平均传热系数的建议.铁道车辆,1983,21(2):1-6.
  • 5陶家哗 杨美传.客车车体稳定导热平均传热系数的研究.西南交通大学学报,1985,(1):99-107.
  • 6张锡宁 李培清.客车隔热性能(K值)的叠加求解法.铁道车辆,1987,25(8):27-30,1987.
  • 7Conceieao E Z E,Da Silva M C G,et al. Thermal behaviour simu- lation of the passenger compartment of vehicles[J]. International Journal of Vehicle Design,2000,24(4) : 372-387.
  • 8JGJ132-2001.采暖居住建筑节能检验标准[S].
  • 9唐兴伦,范群波,张朝晖.ANSYS工程应用教程[M].北京:中国铁道出版社,2003:153-240.
  • 10ChaeJ M, Konrad A. Finite element computation of 3-D electrostatic and magnetostatie field problems [ J ]. IEET Transactions on Magnetis, 1983, 19(6) : 2321-2324.

共引文献19

同被引文献38

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部