摘要
主要研究具有Beddington-DeAngelis发生率的随机SIQS双流行病模型的阈值,同时应用伊藤公式确定了2种疾病消亡的充分条件,并通过构造合适的Lyapunov函数,建立该模型存在遍历平稳分布的充分条件.最后应用数值模拟说明并分析结果.
We discuss the threshold of a stochastic SIQS epidemic model with the Beddington-DeAngelis incidence and double diseases.At the same time,the conditions which lead to the extinction of two infectious diseases are determined by It formula.Moreover,by constructing suitable Lyapunov function,some sufficient conditions for the existence of an ergodic stationary distribution for the model are established.Finally,some numerical simulations are provided to illustrate the analytical results.
作者
吕杰
韦煜明
彭华勤
LYU Jie;WEI Yu-ming;PENG Hua-qin(College of Mathematics and Statistics,Guangxi Normal University,Guilin 541006,China)
出处
《烟台大学学报(自然科学与工程版)》
CAS
2020年第1期6-19,共14页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
广西自然科学基金资助项目(2018GXNSFAA294084,2018GXNSFBA281140)
广西研究生教育创新计划项目(XYCSZ2019083,JGY2019030)