期刊文献+

具有Beddington-DeAngelis发生率的随机SIQS双流行病模型的动力学研究

Dynamical Analysis of Stochastic SIQS Epidemic Model with Beddington-DeAngelis Incidence and Double Diseases
下载PDF
导出
摘要 主要研究具有Beddington-DeAngelis发生率的随机SIQS双流行病模型的阈值,同时应用伊藤公式确定了2种疾病消亡的充分条件,并通过构造合适的Lyapunov函数,建立该模型存在遍历平稳分布的充分条件.最后应用数值模拟说明并分析结果. We discuss the threshold of a stochastic SIQS epidemic model with the Beddington-DeAngelis incidence and double diseases.At the same time,the conditions which lead to the extinction of two infectious diseases are determined by It formula.Moreover,by constructing suitable Lyapunov function,some sufficient conditions for the existence of an ergodic stationary distribution for the model are established.Finally,some numerical simulations are provided to illustrate the analytical results.
作者 吕杰 韦煜明 彭华勤 LYU Jie;WEI Yu-ming;PENG Hua-qin(College of Mathematics and Statistics,Guangxi Normal University,Guilin 541006,China)
出处 《烟台大学学报(自然科学与工程版)》 CAS 2020年第1期6-19,共14页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 广西自然科学基金资助项目(2018GXNSFAA294084,2018GXNSFBA281140) 广西研究生教育创新计划项目(XYCSZ2019083,JGY2019030)
关键词 Beddington-DeAngelis发生率 双流行病 灭绝性 平稳分布 Beddington-DeAngelis incidence double diseases extinction ergodic stationary distribution
  • 相关文献

参考文献2

二级参考文献13

  • 1XU R, MA Z. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay [ J ]. Nonlinear Analysis: Real World Applications, 2009,10(5) :3175 - 3189.
  • 2GREENHALGH D. Some results for an SEIR epidemic model with density dependence in the death rate [ J]. Mathematical Medicine and Biology, 1992,9(2) :67 - 106.
  • 3LI X Z, ZHOU L L. Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J]. Chaos, Solitons & Fractals, 2009,40(2) :874 - 884.
  • 4MISHRA B K, PANDEY S K. Dynamic model of worms with vertical transmission in computer network[J ]. Applied Mathematics and Computation, 2011,217(21) :8438-8446.
  • 5ZHANG Z, YANG H. Stability and Hopf bifurcation in a delayed SEIRS worm model in computer network[J]. Mathematical Problems m Engineering, 2013, Volume 2013, Article ID 319174, 9 pages.
  • 6LI M Y, GRAEF J R, WANG L, et al. Global dynamics of a SEIR model with varying total population size[J], Mathematical bioscienccs, 1999,160(2) :191 - 213.
  • 7SMITH H L, WANG L, LI M Y. Global dynamics of an SEIR epidemic model with vertical transmission[J]. SIAM Journal on Applied Mathematics, 2001,62 ( 1 ) : 58 - 69.
  • 8QI L, CUI J. The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay[J]. Applied Mathematics and Computation, 2013,221:360 - 366.
  • 9BAI Z, ZHOU Y. Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate[J]. Nonlinear Analysis: Real World Applications, 2012,13(3) : 1060 - 1068.
  • 10YAN M, XIANG Z, Dynamic behaviors of an SEIR epidemic model in a periodic environment with impulse vaccination[J ]. Discrete Dynamics in Nature and Society, 2014, Volume 2014, Article ID 262535, 9 pages.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部