摘要
二次曲面理论是大学解析几何知识模块的重难点,每届中国大学生数学竞赛都会涉及对二次曲面理论的考查.通过研究第三届(2011年)中国大学生数学竞赛预赛第一题,分析并给出三维空间中过异面四点确定球面方程的策略:利用代点求参数值的思路确定球面的方程;利用球面的几何实质确定球面的方程;利用球心的特殊几何位置属性确定球面的方程;利用球面簇确定球面的方程;利用公式确定球面的方程.
The theory of quadric surface is an important and difficult point in the course of analytic geometry in universities,and every Chinese undergraduate mathematics contest involves the examination of the theory of quadric surface.After the investigation on the first question of the third Chinese undergraduate mathematics preliminary contest(held in 2011),we investigate and provide the strategy to determine equations of spheres through four points in three-dimensional Euclidean space:To determine the equation of the concerned sphere by substituting the coordinates and calculating out the involved parameters,to determine the equation of the concerned sphere by using the geometric essence of shperes,to determine the equation of the concerned sphere by using the geometric propertis of centers of shperes,to determine the equation of the concerned sphere by exploiting the idea of families of spheres,to determine the equation of the concerned sphere by applying well-kown formulae.
作者
王成强
WANG Chengqiang(School of Mathematics,Chengdu Normal University,Chengdu 611130,China)
出处
《商丘职业技术学院学报》
2019年第6期67-72,共6页
JOURNAL OF SHANGQIU POLYTECHNIC
基金
2017年度国家自然科学基金项目“几类色散波方程能稳问题的统一处理”(11701050)
关键词
大学数学竞赛
球面方程
解析几何
college mathematics competition
equations of spheres
analytic geometry