摘要
研究了一类平面三次多项式系统x=-y+αx ^2-αy^ 2+βx ^3-3βxy^ 2,y=x-2αxy+3βx 2y-βy 3的平衡点,证明了当|α-1|<<0,|β-1|<<0时,该系统共有4个无穷远平衡点且均为鞍点,以及共有3个有限平衡点且均为焦点,并给出了这3个焦点的位置、阶数和稳定性.
The equilibrium points of a class of plane cubic polynomial systems x=-y+αx^ 2-αy^ 2+βx^ 3-3βxy 2,y=x-2αxy+3βx 2y-βy 3 are discussed.It is proved that when|α-1|<<0,|β-1|<<0,there are four infinite equilibrium points and all of them are saddle points,and there are three finite equilibrium points and all of them are focal points.The position,order and stability of the three focal points are given.
作者
龙能
梁海华
LONG Neng;LIANG Haihua(School of Mathematics and Systems Science,Guangdong Polytechnic Normal University,Guangzhou 510665,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2019年第6期98-102,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11771101)
广东省科技计划项目(2016B090927009)
广东省普通高校重大科研项目(2017KZDXM054)