期刊文献+

基于人体头部模型的经颅磁刺激反向线圈研究 被引量:3

Study on Reverse Coil for Transcranial Magnetic Stimulation Based on Human Head Model
下载PDF
导出
摘要 目的设计了一种新型的反向线圈以提高八字形线圈的聚焦性,同时衰减八字形线圈在头皮处产生的电场强度,减少对人体头部表面的刺激。方法根据反向线圈具有可变的高度和角度的特点,基于真实头部模型,对不同高度、角度和尺寸的反向线圈分别从电场强度、刺激深度及聚焦性3个方面进行分析,并与八字形线圈分析结果进行比较。结果选用合适参数的反向线圈,在头皮处产生的电场强度比八字形线圈减少了34.55%,刺激深度增加了1.6%,聚焦性提高了31.3%。结论使用合适的反向线圈可以减少八字形线圈对头皮处的影响,并提高聚焦性。 Objective To improve the focality of traditional figure-8 coil and reduce the electric field strength on the scalp of human scalp in transcranial magnetic stimulation(TMS),a new coil which called reverse coil was designed.Methods The reverse coil had variable heights and angles.The electric field intensity,the stimulation depth and the focality induced by different heights,angles and sizes of reverse coils were analyzed based on human head model.Then they were compared with those of the figure-8 coil.Results The electric field intensity on the scalp for the reverse coil with suitable parameters decreased by 34.55%,the penetration depth increased by 1.6%,and the focality increased by 31.3%as compared with those of the figure-8 coil.Conclusion The reverse coil provides a flexible method to reduce the electric field intensity on the scalp and improve the focality.
作者 熊慧 连璐 刘近贞 Xiong Hui;Lian Lu;Liu Jinzhen(School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2019年第6期517-522,共6页 Space Medicine & Medical Engineering
基金 国家自然科学基金(61871288) 自然科学基金(18JCYBJC90400) 天津市高等学校创新团队培养计划(TD13-5036)
关键词 反向线圈 电场强度 聚焦性 刺激深度 经颅磁刺激 reverse coil electric field strength focality penetration depth transcranial magnetic stimulation
  • 相关文献

参考文献2

二级参考文献67

  • 1沙踪.电磁辐射对人体健康的影响[J].电子质量,2003(3):59-60. 被引量:3
  • 2Repacholi M H. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs[J]. Bioelectromagnetics, 1998, 19(1): 1-19.
  • 3Chen R, Classen J, Gerloff C, et al . Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation[J]. Neuro- logy, 1997, 48(5): 1398-1403.
  • 4Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity[J]. Current Opinion in Neurobiology, 2000,10(2): 232-237.
  • 5Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex[J]. The Lancet, 1985, 325(8437): 1106-1107.
  • 6George M S, Aston-Jones G. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)[J]. Neuropsychopharmacology, 2010, 35(1): 301-316.
  • 7D’Ausilio A, Bufalari I, Salmas P, et al . The role of the motor system in discriminating normal and degraded speech sounds[J]. Cortex, 2012, 48(7): 882-887.
  • 8Huang Y, Edwards M J, Rounis E, et al . Theta burst stimulation of the human motor cortex[J]. Neuron, 2005, 45(2): 201-206.
  • 9Fitzgerald P B, Sarah F, Daskalakis Z J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2006, 117(12): 2584-2596.
  • 10Amassian V E, Stewart M, Quirk G J, et al . Physiological basis of motor effects of a transient stimulus to cerebral cortex[J]. Neurosurgery, 1987, 20(1): 74-93.

共引文献58

同被引文献7

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部