期刊文献+

基于深度学习的颜值估计与电商精准营销 被引量:3

Estimation of Facial Beauty Based on Deep Learning Algorithm and Precision Marketing in E-commerce
原文传递
导出
摘要 近年来,随着机器学习和人工智能领域的不断发展,使得人脸颜值估计的研究得到广泛关注。提出一种基于深度学习的颜值估计框架,利用深度卷积神经网络(Deep Convolutional Neural Network,DCNN)提取人脸图像的特征向量,并采用回归分析计算方法评估人脸颜值,为充分发挥深度卷积神经网络提取特征的能力,提出了优化后的人脸特征提取损失函数。最后,利用该颜值估计算法构建消费者颜值与服装购物偏好相关性模型。结果显示:消费者颜值与服装购物偏好存在一定的相关关系,即颜值越高的消费者越喜欢时尚款式和风格的服装。研究结论为电商企业设计出高度精准营销策略,输出个性化产品和服务提供可能。 In recent years,with the fast development of artificial intelligence and machine learning,the research on facial beauty has attracted great attention.The estimation framework of facial beauty based on deep learning is proposed in the article.The deep convolutional neural network(DCNN) is utilized to extract the feature vector of the face image,and the facial beauty is evaluated by the regression analysis method.In order to improve the efficiency of DCNN,an optimized face feature extraction loss function is established.Furthermore,the estimation algorithm of facial value is used to construct the correlation model between consumer′s facial beauty and clothing shopping preference.A certain correlation between the consumer′s facial beauty and the clothing shopping preference is found.Consumers who prefer fashion apparels are likely to get higher facial beauty score.With the estimation algorithm of facial beauty,e-commerce companies can effectively design high precision marketing strategy and offer personalized products and services.
作者 吴安波 葛晨晨 孙林辉 张云 李刚 WU An-bo;GE Chen-chen;SUN Lin-hui;ZHANG Yun;LI Gang(School of Management,Xi'an University of Science and Technology,Xi'an 710054,China;Energy Economic Research Center,Xi'an University of Science and Technology,Xi'an 710054,China;School of Management,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《工业工程与管理》 CSSCI 北大核心 2019年第6期124-131,共8页 Industrial Engineering and Management
基金 国家自然科学基金重大项目(71832011) 国家自然科学基金面上基金项目(71673220) 西安科技大学哲学社会科学繁荣发展计划项目(2014SY01,2017SY12) 西安科技大学博士启动金项目(2018QDJ010)
关键词 颜值估计 深度学习 卷积神经网络 精准营销 电商 estimation of facial beauty deep learning convolutional neural network precision marketing e-commerce
  • 相关文献

参考文献7

二级参考文献63

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献841

同被引文献49

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部