期刊文献+

铸造方法对ZL205A-0.1%Sc合金组织和力学性能的影响 被引量:3

Effect of Casting Methods on Microstructure and Mechanical Properties of ZL205A-0.1%Sc
下载PDF
导出
摘要 采用砂型和水冷金属型铸造方法分别制备了含0.1%Sc的ZL205A合金试样,并通过力学性能测试,SEM、EDS和TEM等方法研究了铸造方法对合金组织和力学性能的影响。研究结果表明:通过水冷金属型铸造提高冷却速率能抑制脆性W(Al8-xCu4+xSc)相的生成。T6处理后,水冷金属型铸造试样的析出相尺寸稍微变大、数量更多;砂型和水冷金属型铸造条件下ZL205A合金的T6态抗拉强度分别为447.80 MPa和474.64 MPa,延伸率分别为1.60%和10.52%,水冷金属型铸造方法显著提升了合金的延伸率。 ZL205 A alloy specimens containing 0.1%Sc were prepared by sand casting and water-cooled metal casting,respectively.The effects of casting methods on microstructure and mechanical properties of the alloys were studied by means of mechanical property test,SEM,EDS and TEM.The results show that the formation of brittle W(Al8-xCu4+xSc)phase can be inhibited by increasing cooling rate in water-cooled metal mold.After T6 treatment,the size of precipitated phases of the alloy casted in water-cooled metal mold is slightly larger and the amount of precipitated phases increases.T6 tensile strength of ZL205 A alloys casted in sand mold and water-cooled metal mold is 447.8 MPa and 474.64 MPa,and their elongation is 1.60%and 10.52%,respectively.The elongation of the alloy is significantly increased by water-cooled metal mold casting.
作者 王璀 王帅 高文理 WANG Cui;WANG Shuai;GAO Wen-li(College of Materials Science and Engineering,Hunan University,Changsha 410082,China)
出处 《稀有金属与硬质合金》 CAS CSCD 北大核心 2019年第6期37-41,共5页 Rare Metals and Cemented Carbides
基金 国家自然科学基金(51474101,51271076,51474195)
关键词 ZL205A合金 SC 铸造方法 显微组织 力学性能 冷却速率 ZL205A Alloy Sc casting method microstructure mechanical property cooling rate
  • 相关文献

参考文献4

二级参考文献49

  • 1束德林.金属力学性能[M].北京:冶金工业出版社,1994..
  • 2孙伟成 张淑荣 侯爱芹.稀土在铝合金中的作用[M].北京:兵器工业出版社,1992.72.
  • 3[2]MURRAY J L.The Al-Sc (aluminum-scandium) system[J].Journal of Phase Equilibria,1998,19(4):380-384.
  • 4[3]CACCIAMANI G,RIANI P,BORZONE G,et al.Al-rich part phase relation in Al-Mg-Sc system at 430℃[J].Intermetallics,1999,7(1):101-108.
  • 5[8]HARADA Y,DUNAND D C.Microstructure of Al3Sc with ternary transition-metal additions[J].Mat Sci Eng A,2002,329/331:686-695.
  • 6[9]SEIDMAN D N,MARQUIS E A,DUNAND D C.Precipitation strengthening at ambient and elevated temperatures of heat treatable Al(Sc) alloys[J].Acta Mater,2002,50 (16):4021-4035.
  • 7[10]HYDE K B,NORMAN A F,PRANGNELL P B.The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al-Sc alloys[J].Acta Mater,2001,49(8):1327-1337.
  • 8[13]LU Xiao-gang,WANG Yi.Calculation of the vibrational contribution to the Gibbs energy of formation for Al3Sc[J].Calphad,2002,26(4):555-561.
  • 9[14]CACCIAMANI G,RIANI P,BORZONE G,et al.Thermodynamic measurements and assessment of the Al-Sc system[J].Intermetallics,1999,7(1):101-108.
  • 10[15]MURRAY J L.The Al-Sc (aluminum-scandium) system[J].Journal of Phase Equilibria,1998,19:380-384.

共引文献61

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部