期刊文献+

Selenium distribution and nitrate metabolism in hydroponic lettuce(Lactuca sativa L.): Effects of selenium forms and light spectra 被引量:7

Selenium distribution and nitrate metabolism in hydroponic lettuce(Lactuca sativa L.): Effects of selenium forms and light spectra
下载PDF
导出
摘要 A deficiency in selenium(Se) in the human diet is a worldwide problem. The intake of Se-rich vegetables can be a safe way to combat Se deficiency for humans. However, most leafy vegetables can accumulate a high content of nitrates, which poses a potential threat to human health. Light is an important environmental factor that regulates the uptake and distribution of mineral elements and nitrogen metabolism in plants. However, the effects of Se forms and light conditions, especially light spectra, on the uptake and translocation of Se and on nitrate reduction are poorly understood. In this study, lettuce(Lactuca sativa L.) was treated with exogenous Se applied as selenate(10 mmol L^-1) and selenite(0.5 mmol L^-1) and grown under five different light spectra: fluorescent light(FL), monochromatic red LED light(R), monochromatic blue LED light(B), and mixed red and blue LED light with a red to blue light ratio at 4(R/B=4), 8(R/B=8), and 12(R/B=12), respectively. The effects of light spectra and Se forms on plant growth, photosynthetic performance, Se accumulation and nitrate reduction were investigated. The results showed that the light spectra and Se forms had significant interactions for plant growth, foliar Se accumulation and nitrate reduction. The Se concentration and nitrate content in the leaves were negatively correlated with the percentage of red light from the light sources. Compared to Se applied as selenite, exogenous Se applied as selenate was more effective in reducing nitrate via promoting nitrate reductase and glutamate synthase activities. The lowest nitrate content and highest plant biomass were observed under R/B=8 for both the selenate and selenite treatments. The significant effect of the light spectra on the root concentration factor and translocation factor of Se resulted in marked variations in the Se concentrations in the roots and leaves. Compared with FL, red and blue LED light led to significant decreases in the foliar Se concentration. The results from this study suggest that the light spectra can contribute to Se distribution and accumulation to produce vegetables with better food quality. A deficiency in selenium(Se) in the human diet is a worldwide problem. The intake of Se-rich vegetables can be a safe way to combat Se deficiency for humans. However, most leafy vegetables can accumulate a high content of nitrates, which poses a potential threat to human health. Light is an important environmental factor that regulates the uptake and distribution of mineral elements and nitrogen metabolism in plants. However, the effects of Se forms and light conditions, especially light spectra, on the uptake and translocation of Se and on nitrate reduction are poorly understood. In this study, lettuce(Lactuca sativa L.) was treated with exogenous Se applied as selenate(10 mmol L-1) and selenite(0.5 mmol L-1) and grown under five different light spectra: fluorescent light(FL), monochromatic red LED light(R), monochromatic blue LED light(B), and mixed red and blue LED light with a red to blue light ratio at 4(R/B=4), 8(R/B=8), and 12(R/B=12), respectively. The effects of light spectra and Se forms on plant growth, photosynthetic performance, Se accumulation and nitrate reduction were investigated. The results showed that the light spectra and Se forms had significant interactions for plant growth, foliar Se accumulation and nitrate reduction. The Se concentration and nitrate content in the leaves were negatively correlated with the percentage of red light from the light sources. Compared to Se applied as selenite, exogenous Se applied as selenate was more effective in reducing nitrate via promoting nitrate reductase and glutamate synthase activities. The lowest nitrate content and highest plant biomass were observed under R/B=8 for both the selenate and selenite treatments. The significant effect of the light spectra on the root concentration factor and translocation factor of Se resulted in marked variations in the Se concentrations in the roots and leaves. Compared with FL, red and blue LED light led to significant decreases in the foliar Se concentration. The results from this study suggest that the light spectra can contribute to Se distribution and accumulation to produce vegetables with better food quality.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期133-144,共12页 农业科学学报(英文版)
基金 financially supported by the Central Public Interest Science Institute Basal Research Fund (Y2019xk21-01) the Nottingham Trent University Q&R Fund, UK (01ARE RA 926) the Key Projects of Ningxia Key R&D Program Fund, China (2018BBF02012)
关键词 SELENIUM light spectra NITRATES nitrogen metabolism enzymes LEDs Lactuca sativa L. selenium light spectra nitrates nitrogen metabolism enzymes LEDs Lactuca sativa L.
  • 相关文献

同被引文献92

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部