期刊文献+

代数体函数与其k阶导数的唯一性

Uniqueness of an Algebraic Function and Its k-th Derivatives
下载PDF
导出
摘要 利用现有的亚纯函数与其一阶导数和k阶导数的唯一性结论,结合代数体函数与其一阶导数的唯一性相关结论,将Frank和Weissenborn研究的亚纯函数与其k阶导数存在的唯一性定理推广到代数体函数,研究代数体函数与其k阶导数存在的唯一性问题,得到结果:v(v?2)值代数体函数与其k阶导函数至少CM分担2 v个小函数且IM分担∞,则二者相等。由此,可得推论:对v(v?2)值代数体函数与其k阶导函数CM分担2 v个小函数且IM分担∞,则二者相等。对v值代数体函数与其一阶导函数而言,当v?3时,分担值的个数可以减为2v-1个,即得到:v(v?3)值代数体函数与其一阶导函数至少CM分担包括0在内的2v-1个有限复数且IM分担∞,则二者相等。 By using the conclusion of uniqueness of meromorphic function and its first and k-th derivative, and combining the conclusion of the uniqueness of algebroid function and its first derivative,the uniqueness theorem of meromorphic function and its k-th derivative studied by Frank and Weissenborn is extended to algebroid function. The results show that if a v-valued algebroid function(v≥2) and its k-th derivative function at least CM share 2 v small functions and IM share ∞, then the two are equal. Herefrom, it is inferenced that if a v-valued algebroid function(v≥2) and its k-th derivative function CM share 2 v small functions and IM share ∞, then the two are equal. The number of shared values can be reduced to 2 v-1, when the v-value is equal to or greater than 3(v≥3), that is, if an algebroid body function and its derivative functions CM share 2 v-1 finite complex numbers including 0 and IM share ∞, then the two are equal.
作者 朱新瑶 刘晓俊 ZHU Xinyao;LIU Xiaojun(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2019年第6期516-520,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11401381)
关键词 代数体函数 导数 CM分担 唯一性 algebroid function derivative CM share uniqueness
  • 相关文献

参考文献4

二级参考文献26

  • 1孙道椿,高宗升.代数体函数的定理[J].数学学报(中文版),2006,49(5):1027-1032. 被引量:20
  • 2Nevanlinna R. Le Theoreme de Picard-Borel et la Theorie des Fonctions Meromorphes. Paris: Gauthiers- Villars, 1929.
  • 3Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 2003; New York: Kluwer Academic Publishers, 2003.
  • 4Valiron G. Sur la derivee des fonctions algebroides. Bull Soc Math, 1931, 59:17-39.
  • 5He Y Z. On the algebroid functions and their derivatives(II). Acta Math Sinica, 1965, 15:500 -510.
  • 6He Y Z. Sur un probleme d'unicite relatif aux fonctions alg-bro'/des. Sci Sinica, 1965, 14:174-180.
  • 7He Y Z. On the multiple values of algebroid functions. Acta Math Sinica, 1979, 22:733- 742.
  • 8He Y Z, Gao S A. On algebroid functions taking the same values at the same points. Kodai Math J, 1986, 9:256- 265.
  • 9Gol'dberg A A, P'yana V A. Uniqueness theorems for rational, algabraic, and algebroid functions. Ukrainian Math J, 1994, 46:219 -235.
  • 10Xuan Z X, Gao Z S. Uniqueness theorems for algebroid functions. Complex Variables and Elliptic Equations, 2006, 51:701- 712.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部