期刊文献+

基于大数据思维实现全球三十国GDP总量分析与预测

Analysis and Predication of Total GDP of Thirty Countries in the World Based on Big Data
下载PDF
导出
摘要 研究基于大量可实现性多维数据,选择SPSS软件,针对数据寻找与不同经济体国家之间相关性,对于全球GDP排名前三十国的GDP总量进行分析,并划分为不同类型的经济体,结合聚类分析结果并借助BP神经网络多隐含层变量分析法,实现前三十国GDP总量的分析与预测。最后,结合预测结果,对全球经济治理提出意见与建议。 The feasibility study based on a large number of multidimensional data,with the aid of SPSS software,in view of the data and looking for correlations between different economies,global GDP in the top thirty countries GDP analysis and divided into different types of economies,combining with clustering analysis results and with the aid of the BP neural network multi-hidden layer variable analysis method to realize a 30 countries analysis and prediction of the total GDP.Finally,combined with the forecast results,the paper puts forward feasible opinions and suggestions on global economic governance.
作者 王硕 彭虹 WANG Shuo;PENG Hong(Jinshan College,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
出处 《安徽科技学院学报》 2019年第5期78-85,共8页 Journal of Anhui Science and Technology University
基金 国家级大学生创新创业训练计划项目(201914046004) 福建省中青年教师教育科研项目(JAS160828) 福建省省级服务产业特色专业项目(Y163702)
关键词 多维相关性数据 国际经济学 异构性数据聚类分析 BP神经网络 Multidimensional correlation data International economics Cluster analysis of heterogeneous data BP neural network
  • 相关文献

参考文献13

二级参考文献135

  • 1何婷.经济增长对收入分配的影响分析[J].广东经济,2017,0(6X):147-147. 被引量:1
  • 2唐功爽.基于SPSS的主成分分析与因子分析的辨析[J].统计教育,2007(2):12-14. 被引量:66
  • 3杨春学,谢志刚.国际金融危机与凯恩斯主义[N].中华读书报,2009-7-29(13).
  • 4Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18].
  • 5Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056].
  • 6Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384].
  • 7Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30].
  • 8Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505.
  • 9Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30].
  • 10Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494].

共引文献572

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部