期刊文献+

目标运动要素自主隐蔽解析的微分进化策略 被引量:1

Differential evolution strategy for autonomous concealment analysis of target motion elements
下载PDF
导出
摘要 针对传统目标运动要素自主隐蔽解析中存在的噪声适应性差等问题,提出要素自主解析的微分进化策略。首先,简要论述了目标运动要素的自主隐蔽解析过程;其次,推导要素自主解析的协方差传播过程,给出目标运动要素方差与目标观测方位方差的对应关系,分析方位观测均方差对要素自主解析结果的影响;再次,提出了微分进化算法对自主解析模型的优化策略;最后,对优化策略进行仿真验证。结果表明,当方位存在0.1°的均方误差时,初距D0均方误差约为12 Cab,速度分量Vmx、Vmy均方误差分别约为5 Kn、6 Kn,通过微分进化策略优化后明显提高了要素自主解析结果的精度。 Aiming at the problem of poor noise adaptability in the independent concealment analysis of the traditional target motion elements,a differential evolution strategy of factor autonomous analysis is proposed.Firstly,the autonomous concealment analysis process of the target motion elements is briefly discussed.Secondly,the covariance propagation process of the autonomous analysis of the elements is derived,the corresponding relationship between the target motion element variance and the target observation azimuth variance is given,and the influence of azimuth observation mean square error is analyzed.Then a differential evolution algorithm on the autonomous analytical model is proposed again.Finally,the optimization strategy is verified by simulation.The results show that when the azimuth error of 0.1°exists in the azimuth,the mean square error of the initial distance D0 is about 12 Cab,and the mean square errors of the velocity components Vmx and Vmy are about 5 Kn and 6 Kn respectively.The accuracy of the elements autonomous analysis is obviously improved by the optimization of the differential evolution strategy.
作者 单玉浩 杨晓东 王旺 SHAN Yuhao;YANG Xiaodong;WANG Wang(Naval Submarine Academy, Qingdao 266000, China)
机构地区 海军潜艇学院
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第2期277-283,共7页 Systems Engineering and Electronics
基金 装备军内科研项目资助课题
关键词 要素解算 最小二乘估计 协方差传播 方位误差 微分进化 element solution least squares estimation covariance propagation azimuth error differential evolution
  • 相关文献

参考文献6

二级参考文献74

  • 1冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,41(12):74-75. 被引量:31
  • 2孔晓红,须文波.基于差分进化算法多处理机任务调度研究[J].微计算机信息,2006(10S):184-186. 被引量:2
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 4Stron R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces [R]. TechnicalReport TR-95-012, ICSI, 1995.
  • 5Stron R and Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11 : 341 - 359.
  • 6Stron R and Price K. Minimizing the real functions of the ICEC' 96 contest by differential evolution[C]//IEEE Conference on Evolutionary Computation, Nagoya, 1996 : 842 - 844.
  • 7LAMPINEN J. DE's selection rule for multi-objective optimization[R]. Technical Report, Lappeenranta University of Technology, Department of Information Technology, 2001.
  • 8Kukkonen S, Lampinen J. An exension of generalized differential evolution for multi-objective optimization with constraints [ C] // Proceedings of The 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, Finland, 2004 :752 - 761.
  • 9Kukkonen S, Lampinen J. GDE3: The third evolution step of generalized differential evolution[C]///IEEE Congress on Evolutionary Computation, 2005 : 443 - 450.
  • 10Abbass H A, Sarker R, Newton C. PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation, 2002:971 - 978.

共引文献286

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部