期刊文献+

基于TSVM和纹理特征的WIS遥感影像分类方法

WIS remote sensing image classification method based on TSVM and texture features
下载PDF
导出
摘要 针对宽波段成像光谱仪数据为中等空间分辨率、谱段多的特点,提出一种结合双子支持向量机(TSVM)和纹理特征的WIS遥感影像快速分类方法。选用经过几何校正的二级数据产品,进行大气校正、反射率计算等预处理后,裁切出500×500大小的影像作为实验对象。选择以相关性分析的方法获取特征波段。为解决狭小水体混合像元难以区分的问题,选择计算NDWI指数,然后提取其纹理特征。最后,基于TSVM和传统SVM进行分类实验,样本训练及预测的时间分别为14.27 s,26.41 s,得到的总体分类精度分别为87.861 3%,87.659 0%。结果表明,基于TSVM和纹理特征的分类算法不仅训练速度快,而且具有良好的泛化能力。宽波段成像光谱仪数据在中等尺度的土地覆盖分类中具有极大的应用价值。 As for the characteristics of medium spatial resolution and multi spectral coverage of broadband imaging spectrometer data,a WIS remote sensing image fast classification method in combination with the twin support vector machine(TSVM)and texture features is proposed.The secondary data products with geometric correction are selected to perform the pre⁃processing such as atmospheric correction and reflectance calculation,after which the image of the 500×500 size are cut out as the experimental objects.The feature band is obtained by means of the correlation analysis method.The NDWI index is calculated,and then the texture features are extracted to solve the indistinguishable problem of the mixed water pixels in the narrow water.The classification experimen based on TSVM and traditional SVM is carried out,the sample training and prediction time is 14.27 s,26.41 s,respectively,and the overall classification accuracy is 87.8613%,87.6590%.The results show that the classification algorithm based on TSVM and texture features not has fast training speed,but has good generalization ability.The broadband imaging spectrometer data has great application value in medium⁃scale land cover classification.
作者 金鹏飞 汤瑜瑜 危峻 JIN Pengfei;TANG Yuyu;WEI Jun(Chinese Academy of Sciences University,Beijing 100101,China;Key Laboratory of Infrared Detection and Imaging Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China)
出处 《现代电子技术》 北大核心 2020年第2期1-4,共4页 Modern Electronics Technique
基金 国家自然科学基金(11573049)
关键词 遥感影像 快速分类 TSVM 宽波段成像光谱仪 纹理特征提取 结果分析 remote⁃sensing image fast classification TSVM broadband imaging spectrometer feature extraction detection results analysis
  • 相关文献

参考文献3

二级参考文献16

  • 1王立国,张晔,谷延锋.支持向量机多类目标分类器的结构简化研究[J].中国图象图形学报(A辑),2005,10(5):571-574. 被引量:20
  • 2Long C N, Sabburg J M, Calbo J, et al. Retrieving cloud characteristics from ground-based daytime color all-sky images [ J]. Journal of Atmospheric and Oceanic Technology,2006,23:633-652.
  • 3Vittorio A D, Emery W. An automated dynamic threshold cloud-masking algorithm for daytime AVHRR images over land [ J ]. IEEE Transactions on Geoseience and Remote Sensing,2002,40 ( 8 ) : 1682-1694.
  • 4Irish R R, Barker ] L, Goward S N, et al. Characterization of the landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm [ J ]. Photogrammetric Engineering & Remote Sensing, 2006,72 (10) : 1179-1188.
  • 5Irish R R. Landsat7 automatic cloud cover assessment[ J]. SPIE, 2000, 4049: 348-355.
  • 6Oreopoulos L, Wilson M J, V6xnai T. Implementation on Landsat data of a simple cloud-mask algorithm developed for MODIS land bands [ J ]. IEEE Geoscience and Remote Sensing Letters,2011,8 ( 4 ) : 597-601.
  • 7Christodoulou C I, Michaelides S C, Pattichis C S. Multifeature texture analysis for the classification of clouds in satellite imagery[ J 1. IEEE Transactions on Geoscience and Remote Sensing,2003,41 (11 ) :2662-2668.
  • 8Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29( 5 ) :905-910.
  • 9Shao Y H, Zhang C H, Wang X B, et al. Improvements on. twin support vector machines [ J ]. IEEE Transactions on Neural Networks, 2011,22 (6) :962-968.
  • 10Arun K M, Gopal M. Least squares twin support vector machines for pattern classification [J] Expert Systems with Applications,2009,36(4) :7535-7543.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部