期刊文献+

基于多尺度深度卷积神经网络的骨髓白细胞识别研究 被引量:3

Research of bone marrow white blood cell recognition based on multi-scale deep convolutional neural network
下载PDF
导出
摘要 针对骨髓白细胞人工提取特征复杂,识别困难等问题,提出一种多尺度滤波深度卷积神经网络(MS-DCNN)模型。首先,该模型将传统的卷积神经网络模型的滤波器尺寸缩小,以减少模型的总体参数以提升网络模型训练的效率;其次,通过增加滤波器的个数和网络深度来提取骨髓血细胞更丰富的特征;最后通过在Sysmex(希森美康)公开数据集上对6类骨髓白细胞进行实验,并与其他主流分类方法进行对比。结果表明,该文提出的MS-DCNN模型准确率达到了98.9%,高于其他主流方法,其有效性得到了验证。 A multi⁃scale filtering depth convolutional neural network(MS⁃DCNN)model is proposed to improve the problems of complex features and difficult recognition of manual extraction of the bone marrow white blood cells.In this MS⁃DCNN model,the filter size of the traditional convolutional neural network model is shrinked to reduce the overall parameters of it,so as to improve the efficiency of network model training.The more abundant features of bone marrow blood cells can be extracted by increasing the number of filters and the network depth.The experiment of six types of bone marrow white blood cells are conducted on the Sysmex open datasets,and compared with other mainstream classification methods.The results show that the accuracy of the proposed MS⁃DCNN model is up to 98.9%,higher than other mainstream methods,and its effectiveness has been verified.
作者 陈德海 潘韦驰 丁博文 黄艳国 CHEN Dehai;PAN Weichi;DING Bowen;HUANG Yanguo(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《现代电子技术》 北大核心 2020年第2期160-163,共4页 Modern Electronics Technique
基金 国家自然科学基金(61463020) 江西省自然科学基金项目(20151BAB206034)
关键词 骨髓白细胞 卷积神经网络 多尺度特征 深度学习 机器视觉 图像分类 bone marrow white blood cell convolution neural network multi⁃scale features deep learning machine vision image classification
  • 相关文献

参考文献1

二级参考文献15

  • 1汤学民,林学訚,何林.白细胞图像自动识别系统的研究[J].生物医学工程学杂志,2007,24(6):1250-1255. 被引量:6
  • 2Khashman A. Investigation of different neural models for bloodcell type identification [ J ]. Neural Computing & Applications,2012(21) :1 -7.
  • 3Fu KS, Albus JE, Anderson RH. Syntactic pattern recognitionand application [ M ]. New Jersey : Prentice-Hall, 1982 : 152 -164.
  • 4Jaume G, Ernest V, Horst B. Feature selection on node statisticsbased embedding of graphs [ J ]. Pattern Recognition Letters,2012,33(15):1980 -1990.
  • 5Anand R. Revisioning the unification of syntax, semantics andstatistics in shape analysis [ J ]. Pattern Recognition Letters,2013,42(12) : 2301 -2314.
  • 6Frank TA, Jason M, Kinser, et al. , A neural bridge fromsyntactic to statistical pattern recognition [ J]. Neural Networks,1999, 12(3) :519 -526.
  • 7Impoco G, Tuminello L, Fuca N. Segmentation of structuralfeatures in cheese micrographs using pixel statistics [ J ].Computers and Electronics in Agriculture, 2011, 79(2) : 199 -206.
  • 8Slavakis K, Giannakis G, Mateos G. Modeling and optimizationfor big data analytics : ( statistical) learning tools for our era ofdata deluge[ J]. IEEE Signal Process Mag, 2014 , 31: 18 - 31.
  • 9Hong Wenxue, Yu Jianping, Cai Fu, et al. A new method ofattribute reduction for decision formal context [ J ]. ICIC ExpressLetters Part B : Applications,2012 ,3(5 ):丨061 - 1068.
  • 10Ganter B,Wille R. Formal Concept Analysis ; MathematicalFoundantions[ M]. New York: Springer-Verlag, 1999:42 -65.

共引文献3

同被引文献36

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部