期刊文献+

CrN中原子位移的第一性原理计算研究

Atomic distortion in CrN:A first-principle investigation
下载PDF
导出
摘要 采用第一性原理计算方法研究了氮化铬(Chromium Nitride,CrN)的正交(Orthorhombic)相,发现其中的Cr原子和N原子均沿着正交结构的[100]方向移动,均偏离其高对称位置,且在结构中形成锯齿形的原子链,这个现象在过去的计算研究中一直没有被考虑.结果表明,在正交相中,原子位移可以使总能降低0.125 eV,因而更加稳定;考虑原子位移后,计算得到的晶格长度等结构参数与实验符合得更好;计算得到的体弹性模量K0数值明显减小,更加接近实验值.正交相的磁基态是层间不对称的反铁磁结构,原子位移是由正交相中层间不对称的磁应力所驱动,同时原子位移可以补偿层间的磁相互作用力.此外,原子位移不改变CrN的莫特绝缘体特性,但是会轻微减小带隙. First principle calculations indicate that Cr and N atoms in the orthorhombic phase of CrN(Chromium Nitride)tend to shift from their ideal positions along the[100]direction.This shift can induce zigzag Cr-N-Cr chains in the orthorhombic phase;these atomic distortions have not been taken into account in previous studies.The atomic distortions may decrease the total energy of the orthorhombic phase by 0.125 eV/formula unit and make the structure more stable.Lattice constants,moreover,may also be in better agreement with experiment results when considering these atomic distortions.Further,the bulk modulus K0 decreases significantly when considering the atomic distortions and is closer to the experimental value.The atomic distortions are induced by the asymmetric magnetic forces between asymmetric magnetic layers in the special antiferromagnetic order of the orthorhombic phase,which compensates for the magnetic forces between the layers.The atomic distortions would not change the Mottinsulator property of the orthorhombic phase but may reduce the band gap slightly.
作者 王倩倩 赵振杰 李欣 谢文辉 WANG Qianqian;ZHAO Zhenjie;LI Xin;XIE Wenhui(School of Physics and Electronic Science,East China)
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期58-66,共9页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(51572086,11574084,11774091)
关键词 CRN 原子位移 磁性质 电子结构 CrN atomic distortion magnetic properties electronic structure
  • 相关文献

参考文献2

二级参考文献24

  • 1Neckel A 1983 Int. J. Quantum Chem. 23 1317.
  • 2Wiklund U, Bromark M, Larsson M, Hedenqvist P and Hogmark S 1997 Surf. Coat. Technol. 91 57.
  • 3Nouveau C, Djoua~li M A, Banakh O, Sanjin@s R and L@vy F 2001 Thin Solid Films 398 490.
  • 4Rivadulla F, Bafiobre-15pez M, Quintela C X, Pineiro A, Pardo V, BMdomir D, L6pez-Quintela M A, Rivas J, Ramos C A, Salva H, Zhou J S and Goodenough J B 2009 Nature Materials 8 947.
  • 5Papaconstantopoulos D A, Pickett W E, Klein B M and Boyer L L 1985 Phys. Rev. B 31 752.
  • 6Miao M S and Lambrecht W R L 2005 Phys. Rev. B ?1 214405.
  • 7Lambrecht W R L, Miao M S and Lukashev P 2005 J. Appl. Phys. 97 10D306.
  • 8Lambrecht W R L, Prikhodko M and Miao M S 2003 Phys. Rev. B 68 174411.
  • 9Houari A, Matar S F, Belkhir M A and Nakhl M 2007 Phys. Rev. B 75 064420.
  • 10Guan P F, Wang C Y and Yu T 2008 Chin. Phys. B 17 3040.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部