期刊文献+

基于RBF终端滑模观测器的电机转子位置估计 被引量:1

ROTOR POSITION ESTIMATION BASED ON RBF TERMINAL SLIDING MODE OBSERVER
下载PDF
导出
摘要 无刷直流电机常采用位置传感器来检测转子位置,这会影响系统的可靠性,增加电机体积和成本。采用无位置传感器控制技术:引入终端滑模面,其具有快速收敛性和良好观测精度,可减少相位滞后问题;采用RBF神经网络来设计观测器的控制策略,将滑模变量作为神经网络输入,输出即为控制策略,简化控制结构。RBF终端滑模观测器将RBF控制与终端滑模控制的优点紧密结合,优化了控制信号,削弱了抖振现象。仿真结果表明,该观测器能快速准确地估计电机的线反电势及电机转速,系统具有良好性能,满足无刷直流电机的工作要求。 Brushless DC motor often uses position sensor to detect the rotor position,which will affect the reliability of the system and increase the volume and cost of the motor.Therefore,this paper adopts the sensorless control technology.We introduced the terminal sliding surface,which had fast convergence and good observation accuracy,and reduced the phase lag problem.RBF neural network was used to design the control strategy of the observer.The sliding mode variable was the input of the neural network and the output was the control strategy,which simplified the control structure.RBF terminal sliding mode observer combined the advantages of RBF control and terminal sliding mode control,optimized the control signal and weakened the chattering phenomenon.The simulation results show that the designed observer can quickly and accurately estimate the linear back-EMF and motor speed.The system has good performance and meets the requirements of brushless DC motor.
作者 刘慧博 江帅璐 Liu Huibo;Jiang Shuailu(Inner Mongolia University of Science and Technology,Baotou 014010,Inner Mongolia,China)
机构地区 内蒙古科技大学
出处 《计算机应用与软件》 北大核心 2020年第1期71-75,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61563041)
关键词 终端滑模 RBF神经网络 无位置传感器 Terminal sliding mode RBF neural network Sensorless
  • 相关文献

参考文献4

二级参考文献73

  • 1吴学思,韩智红.心率与心力衰竭[J].医师进修杂志,2005,28(1):4-6. 被引量:3
  • 2尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J].中国电机工程学报,2007,27(3):23-27. 被引量:146
  • 3郭清风,杨贵杰,晏鹏飞.SMO在无位置传感器PMSM驱动控制系统的应用[J].电机与控制学报,2007,11(4):354-358. 被引量:15
  • 4康敏.单绕组多相无轴承电机的研究[D].杭州:浙江大学,2009.
  • 5Munoz D, Sbarbaro D. An adaptive sliding-mode controller for discrete nonlinear systems [J]. IEEE Transactions on Industrial Electronics, 2000,47 (3) :574 - 581.
  • 6Kaynak O, Erbatur K, Ertugrul M. The fusion of computationally intelligent methodologies and sliding-mode control - a survey[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1):4-17.
  • 7Efe M 0, Kaynak O, Yu X H. Variable structure systems theory in computational intelligence [ A ]. Variable Structure Control Systems: Towards the 21st Century [ C]. New York: Springer-Verlag, 2002. 274:364-390.
  • 8Ertugroal M, Kaynak O. Neuro sliding mode control of robotic manipulators [ J]. Mechatronics, 2000,10( 1 - 2) :239 - 263.
  • 9Fang Y, Chow T W S, Li X D. Use of a recurrent neural network in discrete sliding-mode control [ J ]. IEE Proceedings: Control Theory and Applications, 1999,146 ( 1 ) : 84 - 90.
  • 10Fang Y, Chow T W S. Synthesis of the sliding-mode neural network controller for unknown nonlinear discrete-time systems [ J].International Journal of System Science, 2000,31 ( 3 ) : 401 -408.

共引文献36

同被引文献21

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部