期刊文献+

基于视觉选择性的离变焦图像序列慢变特征提取算法研究 被引量:1

SLOW VARIATION FEATURE EXTRACTION ALGORITHM FOR DEFOCUSED IMAGE SEQUENCES BASED ON VISUAL SELECTIVITY
下载PDF
导出
摘要 传统慢特征分析(SFA)方法提取的慢变特征不能揭示自然图像的视觉空间拓扑结构。基于此,提出基于视觉选择性的离变焦图像序列慢变特征提取算法。以myTICA方法替代源SFA算法的PCA方法,提取能够反映自然图像离变焦图像序列的视觉空间基的种类、每类元素数量、类内与类间拓扑结构不变性的Gabor特征,并建立与该序列对应的不变性特征森林;利用蒙特卡洛马尔可夫(MCMC)算法替代源SFA算法的多项式扩张方法,实现Gabor类内的元素扩展;利用自定义的近似正交剪枝算法实现不变性特征森林的优化,顺次解决元素法的采样丢失与森林优化问题;利用自定义响应度计算规则实现特征匹配。实验结果表明:该算法正确可行,具有较好的抗噪能力;在实验阈值为0.4时,算法获得识别率为99.96%,说明该算法具有较强的分类能力。 The slow variation features extracted by the traditional slow feature analysis(SFA)cannot reveal the visual spatial topology of natural images.Aiming at this problem,this paper proposes the slow variation feature extraction algorithm for defocused image sequences based on visual selectivity.We replaced PCA method of the original SFA algorithm with myTICA method,and extracted Gabor characteristics of natural image zoom image sequence that could reflect the class of visual space base,the number of elements in each category,the invariance of intra-class and inter-class topological structure.The invariant characteristic forest corresponding to the sequence was established.Using the Monte Carlo Markov(MCMC)algorithm instead of the polynomial extension method of the original SFA algorithm,the element expansion in Gabor class was realized.The self-defined approximate orthogonal pruning algorithm was used to optimize the invariant characteristic forest,and the problems of sampling loss and forest optimization of element method were solved.We used custom responsiveness calculation rules to achieve feature matching.The experimental results show that the algorithm is correct and feasible,and has better anti-noise ability.When the experimental threshold is 0.4,the recognition rate of the algorithm is 99.96%,which shows that the algorithm has strong classification ability.
作者 赵彦明 Zhao Yanming(School of Mathematics and Computer Science,Hebei Normal University for Nationalities,Chengde 067000,Hebei,China)
出处 《计算机应用与软件》 北大核心 2020年第1期205-212,共8页 Computer Applications and Software
基金 河北省社科基金项目(HB18TJ004)
关键词 慢变特征 视觉不变性 离变焦图像序列 视觉选择性 GABOR Slow variation feature Visual invariance Sequence of defocused images Visual selectivity Gabor
  • 相关文献

参考文献5

二级参考文献69

  • 1Riesenhuber M, Poggio T. Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience, 1999, 2 : 1019 - 1025.
  • 2Mutch J, Lowe D G. Muhiclass Object Recognition with Sparse, Localized Features //Proc of the Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 11 -18.
  • 3Fukushima K. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics, 1980, 36(4): 193-202.
  • 4Hubel D H, Wiesel T N. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex. The Journal of Physiology, 1962, 160(1 ): 106-154.
  • 5Fukushima K, Wake N. Handwritten Alphanumeric Character Recognition by the Neocognitron. IEEE Trans on Neural Networks, 1991, 2(3) : 355 -364.
  • 6Tsunoda K, Yamane Y, Nishizaki M, et al. Complex Objects Are Represented in Macaque Inferetemporal Cortex by the Combination of Feature Columns. Nature Neuroscience, 2001,4(8) : 832 -838.
  • 7Hubel D H, Wiesel T N. Functional Architecture of Macaque Monkey Visual Cortex( Ferrier Lecture). Proc of the Royal of Society of London B: Biological Sciences, 1977, 198 : 1 -59.
  • 8Rolls E T, Milward T. A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures. Neural Computation, 2000, 12( 1 ) : 2547 -2572.
  • 9Wallis G, Rolls E. A Model of Invariant Object Recognition in the Visual System. Progress in Neurobiology, 1997, 51 ( 1 ) : 167 - 194.
  • 10Mel B W. SEEMORE: Combining Color, Shape and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition. Neural Computation, 1997, 9(4): 777-804.

共引文献18

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部