期刊文献+

高性能计算与天文大数据研究综述 被引量:4

High Performance Computing and Astronomical Data:A Survey
下载PDF
导出
摘要 数据是天文学发展的重要驱动。分布式存储和高性能计算(High Performance Computing,HPC)为应对海量天文数据的复杂性、不规则的存储和计算起到推动作用。天文学研究中多信息和多学科交叉融合成为必然,天文大数据已进入大规模计算时代。高性能计算为天文大数据处理和分析提供了新的手段,针对一些传统手段无法解决的问题给出了新的方案。文中根据天文数据分类和特征,以高性能计算为支撑,对天文大数据的数据融合、高效存取、分析及后续处理、可视化等问题进行了研究,总结了现阶段的技术特点,提出了处理天文大数据的研究策略和技术方法,并对天文大数据处理面对的问题和发展趋势进行了探讨。 Data is an important driver of astronomical development.Distributed storage and High Performance Computing(HPC)have an positive effect on the complexity,irregular storage and calculation of massive astronomical data.The multi-information and multi-disciplinary integration of astronomical research has become inevitable,and astronomical big data has entered the era of large-scale computing.HPC provides a new means for astronomical big data processing and analysis,and presents new solutions to problems that cannot be solved by traditional methods.Based on the classification and characteristics of astronomical data,and supported by HPC,this paper studied the data fusion,efficient access,analysis and subsequent processing,visualization of astronomical big data,and summarized the current situation.Furthermore,this paper summarized the technical characteristics of the current stage,put forward the research strategies and technical methods for dealing with astronomical big data,and discussed the problems and development trends of the processing of astronomical big data.
作者 汪洋 李鹏 季一木 樊卫北 张玉杰 王汝传 陈国良 WANG Yang;LI Peng;JI Yi-mu;FAN Wei-bei;ZHANG Yu-jie;WANG Ru-chuan;CHEN Guo-liang(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,Nanjing 210023,China)
出处 《计算机科学》 CSCD 北大核心 2020年第1期1-6,共6页 Computer Science
基金 国家重点研发计划项目(2018YFB1003201) 国家自然科学基金(61672296,61602261,61872196,61872194) 江苏省科技支撑计划项目(BE2017166,BE2019740)~~
关键词 天文大数据 高性能计算 数据存储 数据处理 数据可视化 Astronomical big data High performance computing Data storage Data processing Data visualization
  • 相关文献

参考文献4

二级参考文献27

  • 1陈国良 并行计算.结构算法编程[M].北京:高等教育出版社,1999.59.
  • 2Li M, Pan J, Gao L, et al. Bulk flow of halos in ΛCDM simulation[J]. The Astrophysical Journal, 2012, 761(2): 151-161.
  • 3Johnson C, Ross R. Visualization and knowledge discovery:report from the DOE/ASCR workshop on visual analysis anddata exploration at extreme scale[OL]. [2014-11-02]. http: //science.energy.gov/-/media/ascr/pdf/program-documents/docs/Doe_ visualization_ report_2007.pdf.
  • 4Navr P, Johnson J, Bromm V. Visualization of cosmologicalparticle-based datasets[J]. IEEE Transactions on Visualizationand Computer Graphics, 2007, 13(6): 1712-1718.
  • 5Fraedrich R, Auer S, Westermann R. Efficient high-qualityvolume rendering of SPH data[J]. IEEE Transactions onVisualization and Computer Graphics, 2010,16(6): 1533-1540.
  • 6Dolag K, Reinecke M, Gheller C, et al. Splotch: visualizingcosmological simulations[J]. New Journal of Physics, 2008,10(7): 125006.
  • 7Jin Z, Krokos M, Rivi M, et al. High performance astrophysicalvisualization using Splotch [J]. Procedia Computer Science,2010, 1(1): 1775-1784.
  • 8Fraedrich R, Schneider J, Westermann R. Exploring the millenniumrun scalable rendering of large-scale cosmological datasets[J]. IEEE Transactions on Visualization and ComputerGraphics, 2009, 15(6): 1251-1258.
  • 9Kaehler R, Hahn O, Abel T. A novel approach to visualizingdark matter simulations[J]. IEEE Transactions on Visualizationand Computer Graphics 2012, 18(12): 2078-2087.
  • 10Lip-a D R, Laramee R S, Cox S J , et al. Visualization for thephysical sciences[J]. Computer Graphics Forum, 2012, 31(8):2317-2347.

共引文献28

同被引文献48

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部