摘要
本文介绍一种应用于工业领域数据挖掘的方法论,它提出了传统数据挖掘方法CRISP-DM需要在工业情境下关注的内容,同时举例说明深度学习在工业时序数据分类方面的应用并指出其发展方向及意义。
This paper introduces a methodology applied to data mining in the industrial domain.It proposes the content that traditional data mining methodology needs to pay attention to in industrial context,and illustrates the application of deep learning in industrial time series data classification and points out its development direction.
作者
王家海
郝保伟
WANG Jia-hai;HAO Bao-wei(School of Mechanical and Energy Engineering,Tongji University,Shanghai 201804)
出处
《数字技术与应用》
2019年第11期52-53,55,共3页
Digital Technology & Application
关键词
数据挖掘方法
时序数据分类
深度学习
data mining methodology
time series data classification
deep learning