期刊文献+

基于梯度向量流活动轮廓模型的图像分割研究 被引量:3

Image Segmentation Based on Gradient Vector Flow Active Contour Model
下载PDF
导出
摘要 为了提高图像分割精度,加快图像分割的速度,设计了基于梯度向量流活动轮廓模型的图像分割算法。首先对当前图像分割的研究现状进行分析,找到引起图像分割误差大的原因,然后小波变换对待分割图像进行处理,抑制噪声对图像分割结果的不利影响,然后采用梯度向量流活动轮廓模型对去噪后图像进行分割操作,拟合图像中不同区域的轮廓曲线演化过程,从而实现不同区域的分割,最后与当前其它的图像分割算法进行了仿真对比实验。结果表明,梯度向量流活动轮廓模型可以对图像进行高精度的分割,而且分割时间大幅度减少,提升了抗噪能力,图像分割整体性能要明显优于其它图像分割算法。 In order to improve image segmentation accuracy and speed up image segmentation,an image segmentation algorithm based on gradient vector flow active contour model is designed.Firstly,the current research status of image segmentation is analyzed,and the reasons for the large error of image segmentation are found.Secondly,the wavelet transform is used to process the segmented image to suppress the adverse effects of noise on the image segmentation results.Thirdly,the gradient vector flow active contour model is used to segment the denoised image,and the contour curve evolution process of different regions in the image is fitted.The segmentation of different regions is realized.Finally,the simulation and comparison experiments are carried out with other current image segmentation algorithms.The results show that the gradient vector flow active contour model can segment the image accurately,and the segmentation time is greatly reduced,the anti-noise ability is improved.The overall performances of image segmentation are obviously better than other algorithms.
作者 沈丹萍 SHEN Danping(Computer Science and Technology,Suzhou College of Information Technology,Suzhou 215200)
出处 《微型电脑应用》 2019年第12期63-66,共4页 Microcomputer Applications
基金 苏州市吴江项目(H2017-007)
关键词 图像分割 轮廓曲线 梯度向量流活动轮廓模型 小波变换 抗噪能力 Image segmentation Contour curve Gradient vector flow active contour model Wavelet transform Anti-noise ability
  • 相关文献

参考文献11

二级参考文献71

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 3李明,李云松.改进的快速模糊C均值聚类的图像分割方法[J].兰州理工大学学报,2007,33(3):95-99. 被引量:12
  • 4KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models [ J]. International Journal of Computer Vision, 1988, 1 (4) : 321 -331.
  • 5CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [ J]. International Journal of Computer Vision, 1997, 22( 1 ) : 61 - 79.
  • 6COHEN L. On active contour models and balloons [J]. CVGIP: Image Understanding, 1991,53(2) : 211 - 218.
  • 7XU C, PRINCE J L. Snakes, shapes and gradient vector flow [ J]. IEEE Transactions on Image Processing, 1995, 17(3):359 -369.
  • 8XU C, PRINCE J L. Generalized gradient vector flow external forces for active contours [J]. Signal Processing, 1998, 71(2) : 131 - 139.
  • 9KHADIDOS A, SANCHEZ V, LI C T. Active contours based on weighted gradient vector flow and balloon forces for medical image segmentation [ C]//ICIP 2014: Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway, NJ: IEEE, 2014:902 -906.
  • 10LI C, LIU J, FOX M D. Segmentation of edge preserving gradient vector flow: an approach toward automatically initializing and splitting of snakes [ C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2005:162-167.

共引文献99

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部