期刊文献+

对图结构的魔幻性研究

Study on the Magic of Graph Structure
下载PDF
导出
摘要 由给定边魔幻图结合群的代数运算系统,构造出奇魔幻群和图-奇魔幻群,得到具有普适性的可算法化的运算方法和简洁明了的结果,给出了互化标号的数学关系式,规模化地构造出方法,构造过程因运算可算法化而得以实施,新定义与算法的引入为不局限于特殊图类标号的研究提供了新的数理支撑。 Based on the algebraic operation system of the given edges-magical graph and the group,the odd-magical group and the graph odd-magical group are constructed,and the general algorithmic operation method and simple and clear results are obtained.The mathematical relationship of the mutual label is given,and the method is constructed on a large scale.The construction process is implemented due to the algorithmic operation.The introduction of the new definition and algorithm is not limited to the special graph.The research of class label provides a new mathematical support.
作者 姚明 姚兵 YAO Ming;YAO Bing(Lanzhou Petrochemical Polytechnic,Lanzhou 730060,China;College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China;School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《现代信息科技》 2019年第22期5-8,共4页 Modern Information Technology
基金 国家自然科学基金资助项目(项目编号:61662066,61363060) 甘肃省财政厅专项资金(项目编号:2014-63)
关键词 边魔幻标号 优美标号 奇优美标号 魔幻群 全魔幻图 运算关系 edge-magical labellings graceful trees odd-graceful trees magical group total-magical graphs operation relation
  • 相关文献

参考文献2

二级参考文献14

  • 1Bondy, J.A. and Murty, U.S.R., Graph Theory With Application, Macmillan, New York, 1976.
  • 2Bela. Bollobas, The Modern Graph Theory, Springer-Verlag, New Tork, Inc., 1998.
  • 3Joseph, A. Gallian, A survey: Recent results, conjectures and open problems on labeling graphs, J. Graph Theory, 1989, 13(4): 491-504.
  • 4i Kathiresan, K.M, Two classes of graceful graphs, Ars Combinatoria, 2000, 55: 129-132.
  • 5Gallian, J.A., A dynamic survey of graph labelling, The Electronic Journal of Combinatorics, 2007, 14: #DS6, 180pages.
  • 6Joseph A. Gallian. A Dynamic Survey of Graph Labeling[J]. The Electronic Journal of Combinatorics, 2007,14, DS6.
  • 7Alexander Rosa. On Certain Valuations of the Vertices of a Graph[J]. Theory of Graphs(Internat. Symposium, Rome,July 1966) ,Gordon,Breach N Y,Dunod Paris,1967:349-355.
  • 8Bondy J A, Murty U S R. Graph Theory with Application[M]. Macmillan,New York, 1976.
  • 9Kathiresan K M. Two Classes of Graceful Graphs [J]. Ars Combinatoria,2000,55:129-132.
  • 10Llado A. Largest Cliques in Connected Supermaglc Graphs[J]. DMTCS Proc,AE,2005:219-222.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部