期刊文献+

两层分类器模型应用于个人信用评估 被引量:5

The Two-layer Classifier Model and its Application to Personal Credit Assessment
下载PDF
导出
摘要 针对不同的具体问题,传统机器学习算法的预测精度往往存在差异,而集成学习能够综合若干基分类器的预测结果,可以使得分类效果显著提升。首先,简单的介绍了集成学习的基本思想,并分析了Stacking集成算法相对于传统经典集成算法的优势;其次,基于Stacking集成框架,运用UCI的信用评估数据集,构建两层分类器学习模型用以评估个人信用;最后,将提出的模型方法用于实证分析,实验表明相对于SVM、RF、ANN、GBDT这些单一学习方法,以及对这些单一学习方法的结果进行简单的平均集成,两层分类器的Stacking集成学习的预测效果更优。 With respect to the different specific problems, the prediction accuracy of traditional machine learning methods often exist difference, while ensemble learning achieves significant improvement in classification performance by combining several of base classifiers. First, the basic idea of ensemble learning is briefly introduced, and the advantages of Stacking over the traditional classical ensemble algorithms are analyzed. Then, based on the Stacking framework, the two-layer classification model is developed to evaluate the personal credit by using the UCI datasets. Finally, the proposed method is applied to the empirical analysis, and the results show that compared with the single machine learning method of SVM, RF, ANN, GBDT and simple average ensemble, Stacking with two-layer classifier has a better prediction effect.
作者 曹再辉 余东先 施进发 宗思生 CAO Zai-hui;YU Dong-xian;SHI Jin-fa;ZONG Si-sheng(School of Art and Design,Zhengzhou University of Aeronautics,Zhengzhou 450015,China;College of Computer,Zhengzhou Polytechnic,Zhengzhou 450046,China;North China University of Water Resources and Electric Power,Zhengzhou 450046,China)
出处 《控制工程》 CSCD 北大核心 2019年第12期2231-2234,共4页 Control Engineering of China
基金 国家自然科学基金项目(71371172) 河南省高等学校重点科研项目(18A520051)
关键词 集成学习 机器学习 STACKING 信用评估 Ensemble learning machine learning Stacking credit assessment
  • 相关文献

参考文献6

二级参考文献85

  • 1刘永楠,邹兆年,李建中,王海洁.数据完整性的评估方法[J].计算机研究与发展,2013,50(S1):230-238. 被引量:11
  • 2唐晓静,杨桂元.组合预测系数的确定方法[J].财贸研究,1994,5(6):61-63. 被引量:5
  • 3李旭升,郭耀煌.基于朴素贝叶斯分类器的个人信用评估模型[J].计算机工程与应用,2006,42(30):197-201. 被引量:7
  • 4胡守仁 等.神经网络导轮[M].长沙:国防科技大学出版社,1993..
  • 5Richard P L. An introduction to computing with neural nets[J]. IEEE ASSP, 1987, (4) :4-22.
  • 6闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001..
  • 7郭志刚.社会统计分析方法-SPSS软件应用[M].中国人民大学出版社,2001..
  • 8ENACHE D,BONNET.Analyzing credit risk data:a comparison of Logistic discrimination,classification tree analysis and feed-forward networks[J].Computational Statistics,1997 (12):293-310.
  • 9Mayer-Sch?nberger V, Cukier K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Eamon Dolan/Houghton Mifflin Harcourt, 2013.
  • 10Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research, 2009.

共引文献150

同被引文献62

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部