期刊文献+

Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction

Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction
原文传递
导出
摘要 Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple pyrolysis of carbon black,urea and a Fe-containing precursor,which exhibits excellent ORR catalytic activity,superior durability and methanol tolerance versus the Pt/C catalyst in both alkaline and acidic solutions.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations demonstrate that the product is a nitrogen-doped hybrid of graphite encapsulated Fe/Fe3C nanoparticles and carbon black.X-ray photoelectron spectrum(XPS)and electrochemical analyses indicate that the catalytic performance and chemical stability correlate closely with a nitrogen-rich layer on the Fe/Fe3C nanoparticle after pyrolysis with presence of urea,leading to the same four-electron pathway towards ORR as the Pt/C catalyst.The hybrid is prospective to be an efficient ORR electrocatalyst for direct methanol fuel cells with high catalytic performance at low cost. Non-noble metal(NNM) catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR) at low cost.Herein,a novel NNM catalyst was synthesized by the simple pyrolysis of carbon black,urea and a Fe-containing precursor,which exhibits excellent ORR catalytic activity,superior durability and methanol tolerance versus the Pt/C catalyst in both alkaline and acidic solutions.Scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD) characterizations demonstrate that the product is a nitrogen-doped hybrid of graphite encapsulated Fe/Fe3C nanoparticles and carbon black.X-ray photoelectron spectrum(XPS) and electrochemical analyses indicate that the catalytic performance and chemical stability correlate closely with a nitrogen-rich layer on the Fe/Fe3C nanoparticle after pyrolysis with presence of urea,leading to the same four-electron pathway towards ORR as the Pt/C catalyst.The hybrid is prospective to be an efficient ORR electrocatalyst for direct methanol fuel cells with high catalytic performance at low cost.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2543-2551,共9页 材料科学技术(英文版)
基金 supported financially by the National Natural Science Foundation of China (No.51874051) the Natural Science Foundation of Guangxi Province (Nos.2015GXNSFAAI39283 and 2016GXNSFAA380107)
关键词 Nitrogen doping Hybrid Fe/Fe3C Carbon black Oxygen reduction reaction Nitrogen doping Hybrid Fe/Fe3C Carbon black Oxygen reduction reaction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部