期刊文献+

基于卷积神经网络的隐式评价对象识别 被引量:3

Implicit Opinion Targets Identification Based on Convolutional Neural Network
下载PDF
导出
摘要 为解决课程评论中隐式评价对象识别问题,提出了一种基于文本分类的隐式评价对象的识别方法。首先通过word2vec模型获得训练文本对应的词向量,获得短文本特征;其次将短文本特征在Text CNN中进一步提取高层次特征,通过K-max池化操作后放入Softmax分类器中进行训练得出分类模型;最后利用训练好的分类器对隐式评价句进行分类,获取隐式评价句对应的评价对象。实验表明,基于卷积神经网络对隐式课程评论进行属性分类,课程评论的隐式评价对象识别正确率达到89. 9%,满足了课程评论中对隐式评价句对象识别的需求。 In order to solve the problem of implicit opinion targets recognition in course comments,a method of implicit opinion targets identification based on text classification was proposed in this paper. First,the word vectors corresponding to the training text were obtained by word2 vec model which produced the short text features. Then,TextCNN was used to extract high-level features by obtainning classification model by pooling K-max and putting it into softmax classifier. Finally,the trained classifier was used to classify the implicit opinion sentences,and the corresponding opinion targets of the implicit opinion sentences were obtained. The experiment results show that the attribute classification of implicit curriculum reviews based on the convolutional neural network,the accuracy rate of implicit opinion targets identification in curriculum reviews is 89. 9%,which meets the needs of implicit opinion sentence in curriculum reviews.
作者 胡荣 崔荣一 赵亚慧 HU Rong;CUI Rongyi;ZHAO Yahui(Intelligent Information Processing Lab,Yanbian University,Yanji 133002,China)
出处 《吉林大学学报(信息科学版)》 CAS 2019年第6期638-644,共7页 Journal of Jilin University(Information Science Edition)
基金 吉林省教育厅2018年度职业教育与成人教育教学改革研究课题基金资助项目(2018ZCY334)
关键词 隐式评价对象 卷积神经网络 文档分类 词向量 implicit opinion targets convolutional neural network text classification word embedding
  • 相关文献

参考文献10

二级参考文献98

  • 1周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 2任江涛,孙婧昊,施潇潇,黄焕宇,印鉴.一种用于文本聚类的改进的K均值算法[J].计算机应用,2006,26(B06):73-75. 被引量:24
  • 3丁晟春,李岳盟,甘利人.基于顶层本体的领域本体综合构建方法研究[J].情报理论与实践,2007,30(2):236-240. 被引量:45
  • 4倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 5徐冰,王山雨.句子级文本倾向性分析评测报告[C]//第二届中文倾向性分析评测会议(COAE2009)论文集.北京:第二届中文倾向性分析评测委员会,2009:69-73.
  • 6Pang B.,Lee L.,Vaithyanathan S.Thumbs Up Sentiment Classification Using Machine Learning Techniques[C]//Proceedings of EMNLP-2002.2002:79-86.
  • 7Li S.,Huang C.,Zong C. Multi-domain Sentiment Classification with Classifier Combination[J].Journal of Computer Science and Technology (JCST),2011,26(1):25-33.
  • 8Kim S.,Hovy E.Extracting Opinions,Opinion Holders,and Topics Expressed in Online News Media Text[C]//Proceedings of the ACL Workshop on Sentiment and Subjectivity in Text.2006:1-8.
  • 9Lafferty J.,McCallum A.,Pereira F. Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of IC-ML-2001.2001:282-289.
  • 10Jakob N.,Gurevych I.Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields[C]//Proceedings of EMNLP-2010.2010:1035-1045.

共引文献313

同被引文献10

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部