期刊文献+

电动汽车用飞轮电池输出电压平稳控制研究

Research on Output Voltage Smoothing Control of Flywheel Battery for Electric Vehicles
下载PDF
导出
摘要 针对电动汽车用飞轮电池的输出电压平稳控制问题,提出一种基于状态观测器的积分滑模控制器。上述方案首先利用T-S模糊逻辑逼近Boost变换器数学模型中的非线性未知函数,对其进行线性化描述。然后设计一个状态观测器和一个基于观测量的积分滑模控制器来保证Boost变换器非线性系统的稳定运行。同时为了使得到的控制器稳定条件是线性矩阵不等式的形式,引入了Finsler引理处理不等式中的耦合项。上述方案实现了对非线性系统状态量的观测,且削弱了传统滑模控制中的抖振问题。最后通过实例验证了上述控制器的有效性,保证了飞轮电池输出电压的平稳控制。 An integral sliding mode controller based on state observer is proposed for the smooth control of the output voltage of the flywheel battery for electric vehicles.Firstly,the unknown function in Boost converter mathematical model was approximated and linearized by T-S fuzzy logic.Then a state observer and an observer-based integral sliding mode controller were designed to ensure the stable of the Boost converter nonlinear system.At the same time,in order to ensure that the stability condition of the controller is in form of linear matrix inequality,the Finsler lemma was introduced to deal with the nonlinear term in inequality.This scheme realized the control of nonlinear affine systems with unpredictable state quantities and weakened the chattering problem in the traditional sliding mode control.Finally,the effectiveness of the controller was verified by an example and the smooth control of the output voltage of the flywheel battery was realized.
作者 李玲纯 张广明 王玉杰 LI Ling-chun;ZHANG Guang-ming;ZHANG Hai-nan(College of Electrical Engineering and Control Science,Nanjing Tech.University,Nanjing Jiangsu 211816,China;College of Electronics and Electrical Engineering,Chuzhou University,Chuzhou Anhui 239000,China)
出处 《计算机仿真》 北大核心 2019年第12期112-116,共5页 Computer Simulation
基金 国家自然科学基金资助项目(51307080,11605019) 江苏省重点研发计划项目(BE2017164)
关键词 电动汽车 飞轮电池 观测器 滑模控制 Electric vehicles Flywheel battery Observer Sliding mode control
  • 相关文献

参考文献1

二级参考文献15

  • 1A J Krener, A Isidori. Linearization by output injection and onlin- ear observers. System & Control Letters, 1983,3( 1 ) :47-52.
  • 2M Krstic, I Kanellakopoulos, P V Kokotovic. Nonlinear and Adap- tive Control Design[ M1. New York: John Wiley & Sons, 1995.
  • 3S S Ge, C C Hang, T Zhang. Nolinear adaptive control using neu- ral networks and its application to CSTR systems [ J ]. Journal of Process Control, 1998,9(4) :313-323.
  • 4A Ferrara, L Giacomini. Control of a class of mechanical systems with nncertainties via a constructive adaptive/second order VSC ap- proach[ J]. Journal of Dynamic Systems, Measurement, and Con-trol, 2000,122(1 ): 33-39.
  • 5L R Hunt, G Meyer. Stable inversion for nonlinear systems [ J ] Automatiea, 1997,33 (8) : 1549-1554.
  • 6G Sun, D Wang, Z H Peng. Adaptive control based on single neu- ral network approximation for non- linear pure-feedback systems [J]. IET Control Theory and Applications, 2012,6(15) :2333- 2396.
  • 7S C Tong, Y M Li. Adaptive fuzzy output feedback backstepping control of pure- feedback nonlinear systems via dynamic surface control technique [ J ]. International Journal of Adaptive Control and Signal Processing, 2013,27(7) :541-561.
  • 8M Wang, X P Liu, P Shi. Adaptive neural control of pure-feed- back nonlinear time-delay systems via dynamic surface technique [ J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2011,41 (6) :1627-1692.
  • 9C Wang, et al. An ISS-modnlar approach for adaptive neural control of pure-feedbacksystems[J]. Automatica, 2006,42(5) : 129-191.
  • 10G Sun, D Wang, X QLi, Z H Peng. A DSC approach to adaptive neural network tracking control for pure-feedback nonlinear sys- tems[ J ]. Applied Mathematics and Computation, 2013,219 ( 11 ) :6224-6235.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部