期刊文献+

微型注塑条件下PLA/PEG共混物体系增强增韧机理的研究 被引量:2

The Study on Strengthening and Toughening Mechanism of PLA/PEG Blends under Micro-injection Molding Conditions
下载PDF
导出
摘要 详细探究了聚乳酸(PLA)/聚乙二醇(PEG)共混体系在微型注塑加工条件下,不同的加工参数和柔性分子PEG对聚乳酸结晶行为和力学性能的影响。通过理论模拟数据表明微型注塑加工条件下具有较短的填充时间(0.6 s),较高的冷却速率和较大的温度梯度。热台偏光显微镜(POM)和差示扫描量热(DSC)分析的数据表明,PEG引入PLA体系能够促进PLA分子链的运动,成核点的形成,结晶速率的增加以及结晶度的提高。相对于迷你注塑成型,微型注塑加工的应用和模具温度的降低(110~80℃)能够显著增加制品内部分子链的取向程度;并且与PEG的相互协同作用,能够显著提高微型PLA/PEG制品的拉伸强度(53.3 MPa)和断裂伸长率(36.4%),起到增强增韧的作用。 The effects of polyethylene glycol( PEG) and processing parameters on the crystallization performance,morphological changes and mechanical property of polylactic acid( PLA)/PEG blends were studied.Theoretical simulation shows that the microinjection molding process has extreme filling time,higher cooling rate and larger temperature gradient.The results of hot stage polarized optical microscopy( POM) and differential scanning calorimetry( DSC) show that introducing the PEG into PLA blends can increase the intensity of nucleation and crystallization ability.Compared with mini-injection molding,applying the higher shear stress and decreasing the mold temperatures( 110 ℃ to 80 ℃) can increase the degree of orientation.The synergistic effect of higher shear stress and introducing the PEG can improve the tensile strength( 53.3 MPa) and elongation at break( 36.4%).
作者 赵中国 贾仕奎 张鑫 曹乐 张奇锋 杨其 ZHAO Zhong-guo;JIA Shi-kui;ZHANG Xin;CAO Le;ZHANG Qi-feng;YANG Qi(School of Materials Science and Engineering,Shaanxi University of Technology,Hanzhong 723001,China;State Key Laboratory of Polymer Materials Engineering of China,College of Polymer Science and Engineering,Sichuan University,Chengdu 610065,China)
出处 《塑料工业》 CAS CSCD 北大核心 2019年第12期132-137,共6页 China Plastics Industry
关键词 微型注塑 聚乳酸 聚乙二醇 结晶行为 Microinjection Molding Polylactic Acid Polyethylene Glycol Crystallization Behaviors
  • 相关文献

参考文献2

二级参考文献41

  • 1Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses[J].Progress in Materials Science,2007,(04):540-596.
  • 2Tumbull D.查看详情[J],Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1981,(02):217-230.
  • 3Lv R H;Na B;Tian N N;Zou S F Li Z J Jiang S C.查看详情[J],Polymer2011(21):4979-4984.
  • 4Chuah H H. Orientation and Structure Development in Poly(trimethylene) terephthalate) Tensile Drawing[J].Macromolecules,2001,(20):6985-6993.doi:10.1021/ma010317z.
  • 5Jia R;Shao C G;Su L;Huang D H Liu X R Hong S M.查看详情[J],Journal of Physics D:Applied Physics,2007,(12):3763.
  • 6Shao C G,An H N,Wang X,Jia R Zhao B J Ma Z Li X Y Pan G Q Li L B Hong S M. Deformation-Induced Linear Chain—Ring Transition and Crystallization of Living Polymer Sulfur[J].Macromolecules,2007,(26):9475-9481.doi:10.1021/ma071803a.
  • 7Hong S M;Liu X R;Su L.查看详情[J],Journal of Physics D:Applied Physics,2006,(16):3684-3688.
  • 8Yu P;Wang W H;Wang R J;Lin SX Liu X R Hong S M Bai H Y.查看详情[J],Applied Physics Letters2009(01):011910.
  • 9Nostrum C V,Veldhuis F J,Bos G W,Hennink W E. Hydrolytic degradation of oligo(lactic acid):a kinetic and mechanistic study[J].Polymer,2004,(20):6779-6787.doi:10.1016/j.polymer.2004.08.001.
  • 10Meredith J C;Sormanal J L;Keselowsky B G;García A J;Tona A;Karim A;Amis E J.查看详情[J],Biomedical Materials Research2003(03):483-490.

共引文献6

同被引文献35

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部