期刊文献+

基于深度学习检测器的多角度人脸关键点检测 被引量:6

Multi-angle key point detection of face based on deep learning detector
下载PDF
导出
摘要 针对人脸关键点检测(人脸对齐)在应用场景下的速度和精度需求,首先在SSD基础之上融合更多分布均匀的特征层,对人脸框坐标进行级联预测,形成对于多尺度人脸信息均具有更加鲁棒响应的深度学习检测器MR-SSD。其次在局部二值特征LBF的级联形状回归方法基础上,提出了基于面部像素差值的多角度初始化算法。采用端正人脸正负90°倾斜范围内的五组特征点形状进行初始化,求取每组回归后形状的眼部特征点像素均方差值并以最大者对应方案作为最终回归形状,从而实现对多角度倾斜人脸优异的拟合效果。本文所提出的最优架构可以实时获得极具鲁棒性的人脸框坐标并且可实现对于多角度倾斜人脸的关键点检测。 In order to meet the speed and accuracy requirements of face key point detection(face alignment)in application scenarios,firstly,cascaded prediction is carried out on the basis of SSD(single shot multibox detector),which combines more uniformly distributed feature layers to form MR-SSD(more robust SSD),a deep learning detector with more robust response to multi-scale faces.Secondly,based on the cascade shape regression method of local binary feature(LBF),a multi-angle initialization algorithm based on the difference between the facial pixels is proposed.Five groups of feature points in the 90 degree inclination range of positive and negative face are initialized to achieve excellent fitting effect for inclined face under multi angles.The mean square deviation of each group of feature points after regression is calculated and the maximum corresponding shape is used as the final regression shape.The optimal architecture proposed in this paper can obtain robust face bounding box and face alignment schemes against multi-angle tilt in real time.
作者 赵兴文 杭丽君 宫恩来 叶锋 丁明旭 Zhao Xingwen;Hang Lijun;Gong Enlai;Ye Feng;Ding Mingxu(College of Automation,Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China)
出处 《光电工程》 CAS CSCD 北大核心 2020年第1期62-69,共8页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(51777049) 青年科学基金资助项目(51707051)~~
关键词 深度学习 机器学习 人脸关键点检测 人脸对齐 像素差值 deep learning machine learning face keypoint detection face alignment pixel difference
  • 相关文献

参考文献7

二级参考文献110

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2吴清佳.基于神经网络集成的旋转人脸快速检测系统[J].吉林大学学报(工学版),2013,43(S1):424-429. 被引量:2
  • 3宋红,石峰.基于人脸检测与跟踪的智能监控系统[J].北京理工大学学报,2004,24(11):966-970. 被引量:15
  • 4R N Bracewell. The Fourier Transform and Its Application[M]. New York: McGraw-Hill, 1978
  • 5J G Daugman. Complete discrete 2-D Gabor transform by neural network for image analysis and compression[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(7):1169~1179
  • 6R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of faces: A survey[J]. Proceedings of the IEEE, 1995,83:705~741
  • 7W Zhao, R Chellappa, A Rosenfeld, et al. Face recognition: A literature survey[OL]. url="citeseer.nj.nec.com/374297.html"
  • 8R Brunelli, T Poggio. Face recognition: Features versus templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(10):1042~1052
  • 9Turk M, Pentland A. Eigen-faces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):71~86
  • 10Laurenz Wiskott, jean-Marc Fellous, Norbert Kruger, et al. Face recognition by elastic graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):775~779

共引文献103

同被引文献67

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部