期刊文献+

基于Copula的极值重置期权定价

Copula-based pricingof extremum reset options
下载PDF
导出
摘要 目的在风险中性条件下构建极值重置期权定价模型。方法根据期权价格为收益期望的贴现,运用Copula函数构造风险中性条件下的极值重置期权定价模型,选取2支标的资产的价格数据进行实证分析,运用平方欧氏距离标准判别最佳的定价模型。结果与结论 Gumbel Copula为最佳定价模型。相比较于传统的Black-Scholes模型,基于Copula的极值重置期权定价模型具有简洁清晰、易理解的特点。 Purposes-To construct the pricing models of extremum reset options under risk-neutral conditions.Methods-According to the fact that option price is the discount of the expected return,the Copula function is used to construct the pricing models of extremum reset options under risk-neutral conditions.The price data of two underlying assets is selected for empirical analysis.Finally,squared Euclidean distance standard is employed to discriminate the best pricing model.Result and Conclusion-Gumbel Copula is the best pricing model.Compared with the traditional Black-Scholes model,Copula-based pricing model of extremum reset options is simple,clear and easy to understand.
作者 姜世鑫 卢俊香 JIANG Shi-xin;LU Jun-xiang(School of Science,Xi’an Polytechnic University,Xi’an 710600,Shaanxi,China;School of Economics and Management,Xi’an University of Technology,Xi’an 710054,Shaanxi,China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2019年第4期29-35,共7页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 中国博士后科学基金(2017M613169) 国家自然科学基金项目(11601410) 陕西省自然科学基金项目(2017JM1007)
关键词 COPULA函数 极值重置期权 风险中性理论 Copula function extremum reset options risk-neutral pricing theory
  • 相关文献

参考文献4

二级参考文献22

  • 1康朝锋,郑振龙.外汇结构性存款的定价[J].国际金融研究,2005(5):45-49. 被引量:16
  • 2Bouyé E, Durrleman V, Nikeghbali A, Riboulet G, Roncalli T. Copulas: an open field for risk management.Working paper, 2001.
  • 3Coutant S, Durrleman V, Rapuch G, RoncalliCopulas T. Multivariate risk-neutral distributions and implieddependence functions Authors. Working paper, 2001.
  • 4Cuadras C M, Rodriguez Lallena, Editors J A. Proceedings of the Conference on Distributions with Given Marginals and Statistical Modelling[M]. (Kluwer Academic Publishers, Dordrecht), 2002.
  • 5Frees E W, Valdez E. Understanding the relationships using copulas[J]. North American Acturial Journal, 1998,2: 1-25.
  • 6Genest C, Mackay J. The joy of copulas: bivariate distributions with uniform marginals[J]. The American Statistician, 1986, 40: 280-283.
  • 7Nelson R B. An Introduction to Copulas[M]. Springer, New York, 1999.
  • 8Ronealli T. Pricing multi-asset options and credit derivatives with copulas, Crédit Lyonnais, Working paper, 2001.
  • 9Sklar A. Functions de repartition àn dimensions et leurs marges[J]. Publication Inst Statist Univ Paris, 1959, 8:229-231.
  • 10Stulz,R.M..Options on the Minimum or the Maximum of two Risky Assets:Analysis and Applications[J].Journal of Financial Economics,1982(10):161-185.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部