摘要
温升是影响配电柜等电力设备正常使用寿命的关键因素之一。计算和分析热平衡状态下配电柜的温度场分布特性与流场分布特性对降低配电柜温升的研究具有重要意义。以额定电流2500 A的低压配电柜为研究对象,基于Ansys Workbench平台采用电-磁-热-流多场耦合的方法,建立了配电柜多物理场耦合的仿真计算模型。采用自然对流和辐射散热的方式,对比分析了是否计及邻近效应和趋肤效应下的配电柜外壳和载流导体的温度场分布特性,并进行了温升实验加以验证。此外,探究了不同电流条件下低压配电柜的温度场分布特性和流场分布特性。计算结果对配电柜结构的优化设计提供了参考。
Temperature rise is one of the key factors affecting the normal service life of power equipment such as power distribution cabinets.It is of great significance to calculate and analyze the temperature field distribution characteristics and flow field distribution characteristics of power distribution cabinets in the heat balance state to reduce the temperature rise of power distribution cabinets.The low voltage distribution cabinet with rated current of 2500A is taken as the research object.Based on the Ansys Workbench platform,the electro-magnetic-thermal-flow multi-field coupling method is used to establish the simulation calculation model of multi-physics coupling of the power distribution cabinet.The natural convection and radiation heat dissipation methods are used to compare and analyze the temperature field distribution characteristics of the power distribution cabinet shell and current-carrying conductor under the proximity effect and skin effect,and the temperature rise test is carried out to verify.In addition,the temperature field distribution characteristics and flow field distribution characteristics of the power distribution cabinet under different current conditions are explored.The calculation results provide a reference for the optimal design of the power distribution cabinet structure.
作者
徐宏宇
朱金保
南添
刘芳
李兴文
XU Hongyu;ZHU Jinbao;NAN Tian;LIU Fang;LI Xingwen(State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China;Beijing People’s Electric Plant Co.,Ltd.,Beijing 102600,China;Svrui(Tianjin)Electrical Equipment Co.,Ltd.,Tianjing 301822,China)
出处
《电器与能效管理技术》
2019年第24期6-11,共6页
Electrical & Energy Management Technology
关键词
温升
多物理场耦合
自然对流
辐射散热
邻近效应
趋肤效应
temperature rise
coupled multi-physics
natural convection
radiation heat dissipation
proximity effect
skin effect