期刊文献+

面向地理信息大数据的时空事件关系可视化分析框架 被引量:6

Visualized analysis framework on big geo-information data oriented spatio-temporal events
下载PDF
导出
摘要 不同类型的地理信息大数据蕴含了丰富的时空关系,反映个体或者群体时空事件之间的变化模式,在资源、环境、交通等领域的智慧应用中起到关键性作用。然而,地理信息大数据拥有的多尺度和多语义特性,在挖掘地理信息大数据的时空关系时会存在许多困难。如何有效地构建多尺度多语义时空关系,并直观地表达这些时空关系是一个重大挑战。本文设计了一种时空事件关系可视化分析框架,通过定义事件间时空关系的描述,设计了一种多视图协同的可视化分析方法,结合时空关系的可视化协同交互,实现地理信息大数据时空事件可视分析。基于时空轨迹数据,通过试验说明该方法可以探寻时空事件及背景间的时空关系,实现时空事件的交互可视分析。 Rich spatio-temporal relations are hidden in types of big geo-data,which represent the evolution of individual or collective spatio-temporal events and play a decisive role in intelligent applications such as natural resources,environments,transportation and other fields.However,there are many difficulties in digging the spatio-temporal relationship,due to the large number of attributes embedded in multi-scale and multi-semantic big geo-data.It is a technical challenge to effectively construct multi-scale and multi semantic spatio-temporal and as well as to visualize the relations.In this paper,we design an analysis framework to visualize the spatiotemporal relations among spatio-temporal events.we design a multi-view collaboration to visualize the spatio-temporal relations among events by describing a general definition for spatio-temporal relations in spatio-temporal events.A visual interface is presented for users to interactively select or filter spatial and temporal extents to guide the knowledge discovery process.Followed by experimental application on spatio-temporal trajectory data shows that this method can explore the spatio-temporal relationship between spatiotemporal events and context,and realize the interactive visual analysis of spatio-temporal events.
作者 李金磊 慈谕瑶 郑坤 郭绍龙 燕继红 陈宇萍 吴艳民 李仕漪 LI Jinlei;CI Yuyao;ZHENG Kun;GUO Shaolong;YAN Jihong;CHEN Yuping;WU Yanmin;LI Shiyi(Exploration Branch of China Petrochemical Co.,Ltd.,Chengdu 610041,China;China University of Geosciences(Wuhan)School of Geosciences and Information Engineering,Wuhan 430074,China;Beijing Create Space-Time Science and Technology Limited Company,Beijing 100083,China)
出处 《测绘通报》 CSCD 北大核心 2019年第12期101-104,共4页 Bulletin of Surveying and Mapping
基金 国家科技重大专项(2017ZX05036-001) 广东社会发展科技协同创新体系建设项目(2018B020207012) 中国地质大学(武汉)中央高校基本科研业务费专项资金(CUGYCJH18-01)
关键词 地理信息大数据 可视分析 时空关系 时空事件 轨迹数据 big geo-information data visual analysis spatio-temporal relations spatio-temporal events trajectory data
  • 相关文献

参考文献5

二级参考文献30

  • 1周成虎.全空间地理信息系统展望[J].地理科学进展,2015,34(2):129-131. 被引量:163
  • 2AhaltSC.为什么需要数据科学[J].中国计算机学会通讯,2013,9(12):11-15.
  • 3大数据史记2013:盘点中国2013行业数据量[OL].http://www.36dsj.com/archives/6285,2013.
  • 4Zikopoupos P C,Eaton C, de Roos D, et al. Under- standing Big Data, Analytics for Enterprise Class Hadoop and Streaming Data [ OL]. http..//public. dhe. ibm. com/common/ssi/ecm/ en/im114296usen/ IML14296USEN. PDF, 2012.
  • 5Karel R. See Big Data Through a Different Lens [OL]. https : //www. informatica, corn/potential-at- work/information-leaders/article/see-big data. sht- ml,2013.
  • 6李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].2版.北京:科学出版社,2013.
  • 7Li Q Q, Zhang T, Yu Y. Using Cloud Computing to Process Intensive Floating Car Data for Urban Traffic Surveillance[J]. International Journal of Geographical Information Science, 2011, 25 (8) : 1 301-1 322.
  • 8Li D R, Cheng T. KDG Knowledge Discovery from GIS[C]. The Canadian Conference on GIS, Ottawa, Canada, 1994.
  • 9Wong P C,Thomas J. Visual Analytics[J]. IEEE Computer Graphics and Applications, 2004, 24 (5) : 20-21.
  • 10Kovalerchuk B, Schwing J. Visual and Spatial A- nalysis: Advances in Data Mining, Reasoning, and Problem Solving[M]. Netherlands:Springer, 2004.

共引文献260

同被引文献71

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部