期刊文献+

利用引文构建的主题模型研究进展 被引量:3

Research Advances of Citation Based Topic Models
原文传递
导出
摘要 [目的/意义]概率主题模型算法在不断得到改进与扩展,本文对国内外已有的利用引文构建的主题模型进行研究,分析和对比不同模型的生成过程与算法,并探讨利用引文构建的主题模型在科技文本分析中的应用与可扩展的研究方向。[方法/过程]通过Web of Science数据库和CNKI数据库获取国内外利用引文构建主题模型的相关文献,经人工判读后筛选出具有代表性的文献,对这些文献中利用引文构建的主题模型,从建模思想、生成过程、参数估计与推断算法等方面进行对比与分析。[结果/结论]目前国内外利用引文构建的主题模型主要包括研究主题与引文分布的主题模型、研究被引与施引主题间关系的主题模型,以及基于引用内容的引用主题模型;主题模型中引入引文信息后,能够获得更完整的主题内容和特定主题下的重要文献,并可识别施引文献和被引文献之间主题间的关系及影响;已有的模型多集中在概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)和潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)主题模型基础上进行扩展。未来可扩展研究引入引用内容的主题模型、模型的性能优化和评价方法、模型的应用研究等。 [Purpose/significance]A wide variety of topic models has been developed with improved algorithm.This paper aims to study the research advances,generation process and algorithm of citation based topic models.Additionally,we discuss the application in the text of academic articles and research areas in the future.[Method/process]Based on the data of Web of Science and CNKI database,we collected articles of citation based topic models.In these articles,we selected several representative articles after manual interpretation to analyze the generative process,parameter estimation and inference methods in these citation based topic models.[Result/conclusion]Currently,there are mainly three types of citation based topic models.This includes the topic models which focus on the topic-citation distribution,while other topic models mainly study the relationship between the citing documents and the cited documents.Besides,citation context based topic models are also available.Additionally,more complete topic content can be detected after introducing citation information into the topic models.Moreover,most of the models are the variants of LDA and PLSA.In future,incorporating citation context information into topic models,improving the inference methods and applying the models are some of the future directions.
作者 邹丽雪 王丽 刘细文 Zou Lixue;Wang Li;Liu Xiwen(National Science Library,Chinese Academy of Sciences,Beijing 100190;Department of Library,Information and Archives Management,School of Economics and Management,University of Chinese Academy of Sciences,Beijing 100190)
出处 《图书情报工作》 CSSCI 北大核心 2019年第23期131-138,共8页 Library and Information Service
基金 中国科学院文献情报中心青年人才领域前沿项目“基于引用内容关联的多维主题演化研究”(项目编号:G1726)研究成果之一
关键词 主题模型 引文 主题识别 引用内容 topic model citation topic detection citation context
  • 相关文献

参考文献2

二级参考文献36

  • 1张云涛,龚玲,王永成.基于综合方法的文本主题句的自动抽取[J].上海交通大学学报,2006,40(5):771-774. 被引量:16
  • 2LUHN H P. The automatic creation of literature abstract [ J ]. IBM journal of research and development, 1958,2 (2) : 159 - 165.
  • 3BAXENDALE P E. Machine-made index for technical literature-an experiment [ J ]. Journal of research and development, 1958, 2 (4) :354 -361.
  • 4BOKAETF M H, SAMETI H, LIU Y. Unsupervised approach to extract summary keywords in meeting domain [ C ]//Proceedings of the 23rd European signal processing conference. Piseataway : IEEE Press, 2015 : 1406 - 1410.
  • 5BARNES C I, COSTANTINI L, PERSCHKE S. Automatic inde- xing using the SLC-II system [ J ]. Information processing & man- agement, 1978, 14(2): 107-119.
  • 6AWAJAN A. Keyword extraction from Arabic documents using term equivalence classes [ J ]. Crains Chicago business, 2015, 14 (2) : 1 -18.
  • 7E1-BELTAGY S R, RAFEA A. KP-Miner: a keyphrase extraction system for English and Arabic documents [ J ]. Information sys- tems, 2009,34(1) : 132 -144.
  • 8CHEN Y H, LU J L, MENG F T. Finding keywords in blogs: effi- cient keyword extraction in blog mining via user behaviors[ J]. Ex- pert systems with applications an international journal, 2014, 41 (2) :663 - 670.
  • 9BRANDOW R, MITZE K, RAU L F. Automatic condensation of e- lectronic publications by sentence selection [ J ]. Information pro- cessing & management, 1995,31 (5) :675 - 685.
  • 10SUBRAMANIYASWAMY V, PANDIAN S. Effective tag recom- mendation system based on topic ontology using Wikipedia and WordNet [J]. International journal of intelligent systems,2012,27 (12) : 1034-1048.

共引文献30

同被引文献59

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部