期刊文献+

耦合有机朗肯循环的液化空气储能系统优化 被引量:2

Optimization of Liquefied Air Energy Storage System Coupled with Organic Rankine Cycle
下载PDF
导出
摘要 储能是解决风能和太阳能等可再生能源发电间歇性和不稳定性的重要技术途径。针对常规液化空气储能系统循环效率较低的问题,引入有机朗肯循环以利用空气液化阶段产生的压缩热。构建耦合有机朗肯循环的液化空气储能系统,以系统循环效率和空气释能发电阶段㶲效率为目标函数,以压缩机组出口压力、低温泵出口压力、冷箱窄点温差和换热器效能为决策变量,运用非劣分类遗传算法NSGA-Ⅱ进行多目标优化。绘制Pareto最优前沿曲线,采用TOPSIS优选法,得到贴近度最大的系统最优设计方案,与之对应的系统循环效率为62.75%。 Energy storage is an important technical route to solve the intermittence and instability issue of renewable energy generation,such as wind energy and solar energy.Hence in this paper,regarding the low cycle efficiency of conventional liquefied air energy storage system,the organic Rankine cycle is introduced to make use of the compressed heat generated during the liquefaction stage.To construct the liquefied air energy storage model coupled with organic Rankine cycle,the system cycle efficiency and the exergy efficiency in the air energy release and generation stage are set as objective functions.The outlet pressure of compressor unit,the outlet pressure of cryopump,the narrow temperature difference of cold box and the efficiency of heat exchanger are taken as decision variables respectively.And the non-inferior classification genetic algorithm NSGA-II is used for multi-objective optimization.The Pareto optimal frontier curve is then depicted and by virtue of the TOPSIS optimization method,the optimal system design scheme is obtained with the nearest approximation degree in which the corresponding system cycle efficiency is 62.75%.
作者 李建设 董益华 罗海华 LI Jianshe;DONG Yihua;LUO Haihua(Zhejiang Energy Group Co.,Ltd.,Hangzhou 310007,China;Zhejiang Energy Technology Research Institute Co.,Ltd.,Hangzhou 311121,China)
出处 《中国电力》 CSCD 北大核心 2020年第1期124-129,共6页 Electric Power
基金 国家自然科学基金资助项目(51576066)~~
关键词 液化空气储能 有机朗肯循环 循环效率 㶲效率 NSGA-Ⅱ liquid air energy storage organic Rankine cycle cycle efficiency exergy efficiency NSGA-II
  • 相关文献

参考文献5

二级参考文献46

  • 1吴瑜之.太阳能光伏发电及其发展[J].江西科技学院学报,2007,4(3):27-32. 被引量:5
  • 2王春明,周强,王金全,朱瑞德.风-光-柴互补供电系统[J].解放军理工大学学报(自然科学版),2005,6(5):474-478. 被引量:16
  • 3Global Wind Energy Council. Global Wind 2009 Report [EB/OL]. [2010-4-28]. http://www.gwec.net/index.php?id =167.
  • 4Korpaas M, Holen A T, Hildrum R. Operation and Sizing of Energy Storage for Wind Power Plants in a Market System [J]. Electrical Power and Energy Systems, 2003, 25:599-606.
  • 5Greenblatt J B, Succax S, Denkenberger D C, et al. Baseload Wind Energy: Modelling the Competition Between Gas Turbines and Compressed Air Energy Storage for Supplemental Generation [J]. Energy Policy, 2007, 35: 1474-1492.
  • 6Ridge Energy Storage & Grid Services. The Economic Impact of CAES on Wind in TX, OK, and NM, Final Report [R]. 2005.
  • 7CHEN Haisheng, DING Yulong, Toby P, et al. A Method of Storing Energy and a Cryogenic Energy Storage System, WO/2007/096656 [P/OL]. 2007-08-30.
  • 8杜祥琬.中国可再生能源发展战略研究丛书[M].综合卷.北京:中国电力出版社,2008:11-32.
  • 9McDowall J. Integrating energy storage with wind power in weak electricity grids[J]. Journal of Power Sources, 2006, 162(2).- 959-964.
  • 10Lurid P, Paatero J. Energy storage option for improving wind power quality[C]//Nordic Wind Power Conference, Espoo, Finland, 2006.

共引文献172

同被引文献41

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部